We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




X-Ray Crystallography Findings Aid Discovery of New Drugs

By LabMedica International staff writers
Posted on 18 Apr 2017
Sensitive X-ray crystallography techniques were used to determine the three-dimensional (3D) molecular structure of the Mycobacterium tuberculosis enzyme RNA polymerase (Mtb RNAP) alone and when bound to the present first-line anti-tuberculosis drug rifampin.

M. More...
tuberculosis (Mtb) is the causative agent of tuberculosis (TB), which annually kills about 1.8 million people worldwide.

Rifampin is used for the treatment of tuberculosis in combination with other antibiotics, such as pyrazinamide, isoniazid, and ethambutol. For the treatment of tuberculosis, rifampin is administered daily for at least six months. Combination therapy is utilized both to prevent the development of resistance and to shorten the length of treatment. Rifampin inhibits bacterial DNA-dependent RNA synthesis by inhibiting bacterial DNA-dependent RNA polymerase. Resistance to rifampin develops quickly when it is used without another antibiotic. Efforts to circumvent the development of resistance to rifampin have been hampered by the absence of structural information for Mtb RNAP, making rational, structure-based drug discovery for Mtb RNAP impossible.

In the current study, investigators at Rutgers University used X-ray crystallography to establish the crystal structures of Mtb RNAP, alone and in complex with rifampin at 3.8 - 4.4 Angstrom resolution. Results published in April 6, 2017, online edition of the journal Molecular Cell revealed an Mtb-specific structural module of Mtb RNAP and established that rifampin functioned by a steric-occlusion mechanism that prevented extension of RNA.

The investigators also reported the discovery of non-rifampin-related compounds -Nalpha-aroyl-N-aryl-phenylalaninamides (AAPs) - that potently and selectively inhibited Mtb RNAP and Mtb growth, and they described crystal structures of Mtb RNAP in complex with AAPs. AAPs were found to bind to a different site on Mtb RNAP than rifampin, exhibited no cross-resistance with rifampin, functioned additively when co-administered with rifampin, and suppressed resistance emergence when co-administered with rifampin.

"The structure of Mtb RNAP has been the "Holy Grail" for TB drug discovery targeting Mtb RNAP," said senior author Dr. Richard H. Ebright, professor of chemistry and chemical biology at Rutgers University. "AAPs represent an entirely new class of Mtb RNAP inhibitors and are, without question, the most promising Mtb RNAP inhibitors for anti-TB drug development since rifampin. We are very actively pursuing AAPs. We have synthesized and evaluated more than 600 novel AAPs and have identified AAPs with high potencies and favorable intravenous and oral pharmacokinetics."


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.