Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Development of Leukemia and Lymphoma Traced to Loss of T-cell Differentiation Controls

By LabMedica International staff writers
Posted on 22 Dec 2016
Loss of TET protein tumor suppressor activity disrupts white blood cell development, which can lead to leukemia, lymphoma, and other cancers.

DNA methylation is an epigenetic mechanism that is important for controlling gene expression. More...
TET proteins are among the factors taking part in this critical process. The proteins encoded by TET (ten-eleven translocation) family genes are demethylases that oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products.

To learn why TET proteins promote cancer development, investigators at the La Jolla Institute for Allergy and Immunology (CA, USA) genetically engineered a line of mice to lack the genes for both TET2 (TET methylcytosine dioxygenase 2) and TET3 (TET methylcytosine dioxygenase 3) in CD4+CD8+ double-positive T-cells. These mice developed a lethal disease resembling lymphoma within weeks of birth, their spleens and livers overwhelmed with invariant natural killer T-cells (iNKT cells), a normally rare kind of T-cell.

The investigators reported in the November 21, 2016, online edition of the journal Nature Immunology that TET2-TET3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding key lineage-specifying factors.

Transfer of purified TET2-TET3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that developed into a lymphoproliferative disease as lethal as that seen in TET2/3 mutant mice.

"We knew that TET proteins were involved in human cancer but we did not know how they regulated T-cell development," said first author Dr. Angeliki Tsagaratou, a researcher at the La Jolla Institute for Allergy and Immunology. "In the new study we saw huge increases in the proliferation of the special iNKT cells in TET2/3 mutant mice. Once growth control was lost, those cells underwent the kind of malignant transformation that gives rise to T-cell lymphoma in humans. When TET proteins are lost, iNKT cells that lack them apparently become trapped in an immature, highly proliferative state. Unlike normal cells, they cannot switch off growth-promoting genes: they just keep dividing."

"Right now we do not know how TET mutations specifically contribute to either T-cell lymphomas or leukemias. But we think these mutations are early events in both," said Dr. Tsagaratou. "The search is on is to discover additional cancer-causing genes downstream of TET mutations that drive uncontrolled cell division in either context. Identification of additional factors would give us a broad idea of all steps in pathway and provide multiple targets to hit."

Related Links:
La Jolla Institute for Allergy and Immunology


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.