We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Enzyme Identified Promotes Cancer Development by Mishandling Repair of DNA Breaks

By LabMedica International staff writers
Posted on 22 Dec 2016
Cancer researchers have identified an enzyme linked to defective repair of damaged DNA, which is a mechanism that prevents cell death and mediates transformation into a cancerous state.

Homologous recombination (HR) is one of the major DNA double-strand break repair pathways in mammalian cells. More...
Defects in HR trigger genomic instability and result in cancer predisposition. The defining step of HR is homologous strand exchange directed by the protein RAD51 (RAD51 recombinase), which is recruited to double-strand break repair by BRCA2 (Breast cancer 2). However, the mechanism that regulates the BRCA2–RAD51 interaction has not been defined.

To better understand this aspect of DNA repair, investigators at the Mayo Clinic (Rochester, MN, USA) searched for the enzyme responsible for the ubiquitination and deubiquitination of RAD51, since ubiquitination of RAD51 hindered RAD51–BRCA2 interaction (leading to cell death), while deubiquitination of RAD51 facilitated RAD51–BRCA2 binding and RAD51 recruitment and thus was critical for proper HR (leading to cancer development).

The investigators reported in the December 9, 2016, online edition of the journal Genes & Development that in response to DNA damage, the deubiquitinase enzyme UCHL3 (Ubiquitin carboxyl-terminal hydrolase isozyme L3) was phosphorylated and activated by ATM (ATM serine/threonine kinase). ATM is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks. It phosphorylates several key proteins that initiate activation of the DNA damage checkpoint, leading to cell cycle arrest, DNA repair, or apoptosis.

The investigators found that UCHL3 deubiquitinated RAD51 and promoted the binding between RAD51 and BRCA2. Overexpression of UCHL3 rendered breast cancer cells resistant to radiation and chemotherapy, while depletion of UCHL3 sensitized cells to these treatments, suggesting a determinant role of UCHL3 in cancer therapy.

"DNA encodes the blueprints for our body, and DNA repair is a fundamental mechanism to prevent the accumulation of mutations in DNA and human disease," said senior author Dr. Zhenkun Lou, a molecular pharmacologist at the Mayo Clinic.

"The BRCA2 pathway is important for DNA repair, and mutation of the BRCA2 gene is linked to increased cancer risk, especially breast cancer and ovarian cancer. UCHL3 could be a potential therapeutic target to overcome resistance to chemotherapy in cancer cells that have a high level of UCHL3. While more research is needed, our studies may provide a novel therapeutic venue to treat women's cancer and thereby contribute to the health and welfare of women."

Related Links:
Mayo Clinic



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Rapid Flu Test
Influenza A&B Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.