Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Anemia Proteins Function Cooperatively with PTEN Tumor Suppressor

By Gerald M. Slutzky, PhD
Posted on 13 Dec 2016
A recently discovered link between the rare childhood genetic syndrome Fanconi anemia and the PTEN tumor suppressor gene could lead to the development of improved treatment options for cancer patients with certain types of PTEN mutations.

Fanconi anemia (FA) is a genetic disease characterized by bone marrow failure and increased cancer risk. More...
There are 17 genes responsible for FA, one of them being the breast-cancer susceptibility gene BRCA2. Proteins encoded by these genes are involved in the recognition and repair of damaged DNA; genetic defects leave them unable to carry this out.

The FA proteins function primarily in DNA inter-strand crosslink (ICL) repair. Investigators at the University of Rhode Island (Kingston, USA) have examined the role of PTEN (Phosphatase and tensin homolog) phosphatase in this process. PTEN, which is missing in 60 to 70% of metastatic cancers in humans, is the name of a phospholipid phosphatase protein, and gene that encodes it. The PTEN gene acts as a tumor suppressor gene thanks to the role of its protein product in regulation of the cycle of cell division, preventing cells from growing and dividing too rapidly.

The investigators reported in the November 7, 2016, online edition of the journal Scientific Reports that PTEN played an important role in ICL repair, as PTEN-deficient cells, like FA patient cells, exhibited increased sensitivity to ICL-mediated cytotoxicity and displayed increased levels of chromosome structural aberrations following ICL exposure. PTEN function in ICL repair was independent of its lipid phosphatase activity yet dependent on its protein phosphatase activity. PTEN deficiency led to increased mutagenic ICL repair.

"The PTEN gene codes for a phosphatase - an enzyme that removes phosphate groups from proteins," said senior author Dr. Niall Howlett, associate professor of cell and molecular biology at the University of Rhode Island. "Many Fanconi anemia proteins have phosphate groups attached to them when they become activated. However, how these phosphate groups are removed is poorly understood. So we performed an experiment to determine if Fanconi anemia and PTEN were biochemically linked. By testing if cells with mutations in the PTEN gene were also sensitive to DNA crosslinking agents, we discovered that Fanconi anemia patient cells and PTEN-deficient cells were practically indistinguishable in terms of sensitivity to these drugs. This strongly suggested that the Fanconi anemia proteins and PTEN might work together to repair the DNA damage caused by DNA crosslinking agents."

"Before this work, Fanconi anemia and PTEN were not even on the same radar," said Dr. Howlett. "This is really important to understanding how this disease arises and what its molecular underpinnings are. The more we can find out about its molecular basis, the more likely we are to come up with strategies to treat the disease. We can now predict that if a patient has cancer associated with mutations in PTEN, then it is likely that the cancer will be sensitive to DNA crosslinking agents. This could lead to improved outcomes for patients with certain types of PTEN mutations."

Related Links:
University of Rhode Island



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Rapid Flu Test
Influenza A&B Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.