We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blocking the Acsl14 Enzyme Prevents Ferroptosis-Linked Cell Death

By Gerald M. Slutzky, PhD
Posted on 25 Nov 2016
Inhibiting the enzyme Acsl4 (acyl-CoA synthetase long-chain family member 4), which is involved in fatty acid metabolism, has been postulated to be a viable therapeutic approach to preventing ferroptosis-related diseases.

Ferroptosis, a poorly understood form of programmed cell death, has been implicated in the pathological cell death found in neuronal and kidney tissues. More...
It may also be possible to selectively trigger ferroptosis in certain cancer cells. Previously, only a few essential molecules, such as glutathione peroxidase 4 (Gpx4), have been implicated in the ferroptotic process.

Investigators at Helmholtz Zentrum München (Germany) applied two independent approaches - a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines - to generate new details as to how ferroptosis works.

They reported in the November 14, 2016, online edition of the journal Nature Chemical Biology that ACSL4 was as an essential component for ferroptosis execution. Specifically, cells in which the genes for both Gpx4 and Acsl4 proteins had been removed showed marked resistance to ferroptosis. Mechanistically, Acsl4 enriched cellular membranes with long polyunsaturated omega-6 fatty acids. Targeting Acsl4 with thiazolidinediones, a class of antidiabetic compound, prevented tissue destruction in a mouse model of ferroptosis, Moreover, Acsl4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis.

"The individual mechanisms involved in this type of cell death remain only partly understood, and our findings make an important contribution towards a better understanding of ferroptotic cell death," said senior author Dr. Marcus Conrad, head of a research group at the institute of developmental genetics at the Helmholtz Zentrum München. "Our intriguing insights that the Acsl4 enzyme plays a substantial role in the process of cell death provide novel cues for yet-unrecognized therapeutic approaches towards inhibiting ferroptosis in degenerative diseases or inducing ferroptosis in certain tumor diseases. In particular, tumors that are otherwise very difficult to treat with standard chemotherapy might be amenable for ferroptosis therapy."

Related Links:
Helmholtz Zentrum München


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Blood Ammonia Test Analyzer
DRI-CHEM NX10N
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.