We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Lung and Tracheal Tissue Expected to Aid Respiratory Disease Research

By Gerald M. Slutzky, PhD
Posted on 25 Nov 2016
By modifying a technique for growing cultured intestinal tissue, researchers have developed a tissue-engineered model of the lung and trachea, which contains the diverse cell types present in the human respiratory tract.

Since the cellular and molecular mechanisms that underpin regeneration of the human lung are unknown, study of lung repair has been slowed by the necessity of using model systems that exclude key components.

Investigators at Children's Hospital Los Angeles (CA, USA) had previously developed tissue-engineered small intestine (TESI) and showed that this regenerated tissue was functional and contained all of the key components of the native tissue. More...
Based on this expertise, they hypothesized that multicellular epithelial and mesenchymal cell clusters or lung organoid units (LuOU) could be transplanted to recapitulate proximal and distal cellular structures of the native lung and airways.

The investigators described in the October 31, 2016, online edition of the journal Tissue Engineering Part C: Methods how they transplanted postnatal tissues from whole mouse and human lung, distal mouse lung, as well as mouse and human trachea onto biodegradable polymer scaffolds. The tissue obtained by using this strategy was termed tissue-engineered lung or TELu, and it contained the necessary cell types consistent with native adult lung tissue and demonstrated proliferative cells at two and four weeks. This technique recapitulated important elements of both mouse and human lungs featuring key components of both the proximal and distal lung regions.

"We think that understanding lung regeneration in this model will allow several steps forward," said senior author Dr. Tracy Grikscheit, associate professor of surgery at Children's Hospital Los Angeles. "For example, advanced stages of disease can be studied with TELu that would be impossible to fully understand in our patients. Likewise, we can more quickly apply many more therapies in this model in order to – hopefully – deliver future human therapies."

Related Links:
Children's Hospital Los Angeles



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.