Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biomarkers Demonstrate Potential as Indicators of HD Progression

By Gerald M. Slutzky, PhD
Posted on 17 Nov 2016
Several peripheral biomarkers have been identified that demonstrate the potential to serve as indicators to assess progression of Huntington’s disease.

Huntington’s disease (HD) is caused by a dominant gene that encodes huntingtin protein. More...
The 5' end of the HD gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine that is repeated multiple times. Normal persons have a CAG repeat count of between seven and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of huntingtin is broken down by the cell into toxic peptides, which contribute to the pathology of the syndrome.

Although genetic testing readily identifies those who will be affected by HD, current drug treatments do not prevent or slow down disease progression. A major challenge is the slow clinical progression of the disease and the inability to biopsy the affected tissue, the brain. These factors make it difficult to design short and effective proof of concept clinical trials to assess treatment benefit.

One of the earliest events in HD is disruption of mitochondrial function by mutant huntingtin aggregates that reduce cellular energy levels and cause oxidative damage. Investigators at Stanford University (Palo Alto, CA, USA) had previously identified a molecule, P110, which could restore mitochondrial function and prevent neuronal death in mouse models of HD. The current study focused on identifying peripheral biomarkers that would correlate with the progression of the disease and treatment benefit.

Initially, the investigators compared levels of mitochondrial DNA (mtDNA) and inflammation markers in plasma, a product of DNA oxidation in urine, mutant huntingtin aggregates, and 4-hydroxynonenal adducts in muscle and skin tissues in wild-type mice and in the R6/2 HD mouse model. Changes in amounts of these indicators were monitored during P100 treatment of the HD mice.

Results published in the November 7, 2016, online edition of The Journal of Experimental Medicine revealed that P110 treatment effectively reduced the levels of all these biomarkers. Abnormal levels of mtDNA were also found in plasma of HD patients relative to control subjects, which suggested that these potential peripheral biomarkers might be candidates to assess HD progression and the benefit of intervention for future clinical trials.

“We have identified several biomarkers that correlate with disease progression and treatment in mice,” said senior author Dr. Daria Mochly-Rosen, professor of chemical and systems biology at Stanford University. “We hope that our work will provide the basis for a larger study of patient samples that may ultimately identify biomarkers that can be used as surrogate markers to determine the benefit of therapeutic interventions in diagnosed but asymptomatic HD patients to prevent or delay disease onset.”

Related Links:
Stanford University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.