Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Modulation of Redox Environment Increases Breast Cancer Aggressiveness

By Gerald M. Slutzky, PhD
Posted on 16 Nov 2016
Cancer researchers have identified an enzyme that promotes the transition of breast tissue from epithelial (non-cancerous) to mesenchymal (metastatic cancer-like) modes during the development of invasive triple negative breast cancer.

Since analysis of breast cancers in The Cancer Genome Atlas database had revealed strong positive correlation between a tumor's EMT (epithelial - mesenchymal transition) score and the expression of the manganese superoxide dismutase (MnSOD) enzyme, investigators at the National University of Singapore (Singapore) sought to assess the involvement of MnSOD during the switch between epithelial-like and mesenchymal-like phenotypes in breast carcinomas.

As a member of the iron/manganese superoxide dismutase family, this enzyme transforms toxic superoxide, a byproduct of the mitochondrial electron transport chain, into hydrogen peroxide and diatomic oxygen. More...
This function allows SOD2 to clear mitochondrial reactive oxygen species (ROS) and, as a result, confer protection against cell death. As a result, this protein plays an anti-apoptotic and pro-carcinogenic role against oxidative stress, ionizing radiation, and inflammatory cytokines.

The investigators reported in the August 2016 issue of the journal Antioxidants & Redox Signaling that they had observed the overexpression of MnSOD in mesenchymal-like breast cancers that exhibited increased migratory, invasive, and metastatic capacities. On the other hand, repression of MnSOD induced an epithelial phenotype with a reduction in EMT markers and cells' scattering, invasive, and motile capacity.

The positive correlation between MnSOD and EMT score was significant and consistent across all breast cancer subtypes. Similarly, a positive correlation of EMT score and MnSOD expression was observed in established cell lines derived from breast cancers exhibiting phenotypes ranging from the most epithelial to the most mesenchymal.

The investigators proposed that at the mechanistic level MnSOD appeared to drive epithelial to mesenchymal transition via its ability to modulate the cellular redox environment by adjusting the ratio of superoxide to hydrogen peroxide.

"By suppressing MnSOD expression or its activity in triple negative breast cancer patients, we are able to make the tumor cells less aggressive and more sensitive to chemotherapy," said senior author Dr. Alan Prem Kumar, principal associate in the Cancer Science Institute of Singapore at the National University of Singapore.

Related Links:
National University of Singapore


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.