Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Inhibition of Galactin-3 Reverses Insulin Resistance in Diabetes and Obesity Models

By Gerald M. Slutzky, PhD
Posted on 16 Nov 2016
Chemical or genetic inhibition of the protein galectin-3 (Gal3) was shown to reverse insulin resistance and glucose intolerance in mouse models of obesity and diabetes.

Galectin-3 (Gal3) is an approximately 30,000 Dalton protein, which like all galectins contains a carbohydrate-recognition-binding domain (CRD) of about 130 amino acids that enables the specific binding of beta-galactosides. More...
Encoded by a single gene, LGALS3, located on chromosome 14, Gal3 is expressed in the nucleus, cytoplasm, mitochondrion, cell surface, and extracellular space where it plays an important role in cell-cell adhesion, cell-matrix interactions, macrophage activation, angiogenesis, metastasis, and apoptosis.

Gal3 secreted by macrophages is elevated in both obese subjects and mice. Administration of Gal3 to mice caused insulin resistance and glucose intolerance, whereas inhibition of Gal3, through either genetic or pharmacologic loss of function, improved insulin sensitivity in obese mice.

Investigators at the University of California, San Diego (USA) described the mechanism for the effects of Gal3 on insulin resistance in the November 3, 2016, issue of the journal Cell. They reported that in vitro treatment with Gal3 directly enhanced macrophage chemotaxis, reduced insulin-stimulated glucose uptake in myocytes and adipocytes and impaired insulin-mediated suppression of glucose output in primary mouse hepatocytes. Gal3 bound directly to the insulin receptor (IR) and inhibited downstream IR signaling.

In mouse models of type II diabetes and obesity, bone marrow-derived macrophages were identified as the source of Gal3 that led to insulin resistance. Genetic or pharmaceutical removal of Gal3 returned insulin sensitivity and glucose tolerance to normal levels, even among older mice, without affecting obesity.

"This study puts Gal3 on the map for insulin resistance and diabetes in mouse models," said senior author Dr. Jerrold Olefsky, professor of medicine at the University of California, San Diego. "Our findings suggest that Gal3 inhibition in people could be an effective anti-diabetic approach."

Related Links:
University of California, San Diego


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.