We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Protein Found Blocks Transmission of Cytotoxic Fibrils in Parkinson's Disease Model

By LabMedica International staff writers
Posted on 12 Oct 2016
Neurodegenerative disease researchers have identified a protein that promotes the spread of toxic alpha-synuclein complexes in the brains of mice serving as a model system for human Parkinson's disease (PD).

In the brains of PD patients, pathologic alpha-synuclein seems to spread from cell to cell via self-amplification, propagation, and transmission in a stereotypical and topographical pattern among neighboring cells and/or anatomically connected brain regions. More...
The underlying mechanisms and molecular entities responsible for the transmission of pathologic alpha-synuclein from cell to cell are not known.

Investigators at Johns Hopkins University (Baltimore, MD, USA) studied the spread of pathologic alpha-synuclein complexes in cell cultures and in a mouse PD model. They used recombinant alpha-synuclein preformed fibril complexes (PFF) as a model system with which to study the transmission of misfolded alpha-synuclein from neuron to neuron.

The investigators screened a library of genes that encode transmembrane proteins to identify alpha-synuclein-biotin PFF–binding candidates via detection with streptavidin-AP (alkaline phosphatase) staining. Three positive clones were identified that bound alpha-synuclein PFF and included lymphocyte-activation gene 3 (LAG3), neurexin 1beta, and amyloid beta precursor-like protein 1 (APLP1). Of these three transmembrane proteins, LAG3 demonstrated the highest ratio of selectivity for alpha-synuclein PFF over the alpha-synuclein monomer.

Results published in the September 30, 2016, online edition of the journal Science revealed that LAG3 was specific for alpha-synuclein PFF. The internalization of alpha-synuclein PFF involved LAG3, since deletion of LAG3 reduced the endocytosis of alpha-synuclein PFF. Neuron-to-neuron transmission of pathologic alpha-synuclein and the accompanying pathology and neurotoxicity was substantially attenuated by deletion of LAG3 or by antibodies to LAG3.

The lack of LAG3 substantially delayed alpha-synuclein PFF–induced loss of dopamine neurons, as well as biochemical and behavioral deficits in vivo. The identification of LAG3 as a receptor that binds alpha-synuclein PFF provides a target for developing therapeutics designed to slow the progression of PD.

“Other labs showed alpha-synuclein might spread from cell to cell,” said senior author Dr. Ted Dawson, director of the institute for cell engineering at Johns Hopkins University. “Typical mice develop Parkinson’s-like symptoms soon after they are injected [with alpha-synuclein PFF], and within six months, half of their dopamine-making neurons die, but mice without LAG3 were almost completely protected from these effects. Antibodies that blocked LAG3 had similar protective effects in cultured neurons.”

Related Links:
Johns Hopkins University


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Parainfluenza Virus Test
PARAINFLUENZA ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.