We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blocking Pair of Metalloproteases Halts Brain Tumor Growth

By LabMedica International staff writers
Posted on 05 Oct 2016
A team of British cancer researchers has identified the metalloprotease enzymes ADAM10 and ADAM17 as potential therapeutic targets for the treatment of glioblastoma multiforme (GBM) brain tumors.

GBM is the most common primary tumor of the central nervous system and is almost always fatal. More...
The aggressive invasion of GBM cells into the surrounding normal brain makes complete surgical removal impossible, significantly increases resistance to the standard therapy regimen, and virtually assures tumor recurrence. Median survival for newly diagnosed GBM is 14.6 months and declines to eight months for patients with recurrent GBM.

Investigators at the University of Southampton (United Kingdom) chose to study ADAM10 and ADAM17 due to their high expression in glioblastoma and their ability to activate cytokines and growth factors. ADAM10 and ADAM17 are members of the ADAM family of cell surface proteins that have unique structure possessing both potential adhesion and protease domains. Sheddase, a generic name for the ADAM metallopeptidases, functions primarily to cleave membrane proteins at the cellular surface. Once cleaved, the sheddases release soluble ectodomains with an altered location and function.

In order to study the roles of the two enzymes in GBM, the investigators isolated multipotent sphere-forming cells from human high-grade glioma (glioma sphere-forming cells (GSCs). Working with these cells, which also express high levels of ADAM10 and ADAM17, allowed the investigators to investigate their adhesive and migratory properties in vitro.

Results published in the August 19, 2016, online edition of the journal Molecular Neurobiology revealed that inhibition of ADAM10 and ADAM17 selectively increased GSC, but not neural stem cell, migration and that the migrated GSCs exhibited a differentiated phenotype, which meant that the tumor stopped growing and spreading. The investigators also observed a correlation between nestin, a stem/progenitor marker, and fibronectin, an extracellular matrix protein, expression in high-grade glioma tissues. These results suggested that therapies against ADAM10 and ADAM17 might promote cancer stem cell migration away from the site of tumor formation resulting in a differentiated phenotype that would be more susceptible to treatment.

“When confirmed in animal models of glioblastoma, this finding will be of great importance for patients and clinicians,” said senior author Dr. Sandrine Willaime-Morawek, lecturer in stem cells and brain repair at the University of Southampton. “Glioblastoma is a devastating disease which is often untreatable. We have found that blocking ADAMs may lead to reduced tumor growth and less recurrence following conventional treatments, improving the chance of complete surgical removal and improving survival rates."

Related Links:
University of Southampton


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.