We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Protein Linked to Destruction of Mitochondria in Huntington's Disease

By LabMedica International staff writers
Posted on 28 Sep 2016
Researchers studying the molecular mechanisms involved in Huntington's disease (HD) have identified a protein that binds to mutant huntingtin protein in the mitochondria of neurons, which results in destruction of the mitochondria and death of the nerve cells.

Huntington’s disease is caused by a dominant gene that encodes the huntingtin protein. More...
The 5' end of the HD gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine that is repeated multiple times. Normal persons have a CAG repeat count of between seven and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of huntingtin is broken down into toxic peptides, which contribute to the pathology of the syndrome.

Investigators at Case Western Reserve University (Cleveland, OH, USA) have been searching for factors that interact with mutant huntingtin protein to better understand the initial steps of Huntington’s disease progression. To this end they conducted proteomic analyses, which identified valosin-containing protein (VCP) as a mutant huntingtin-binding protein on the mitochondria.

VCP is an ATPase enzyme present in all eukaryotes. Its main function is to segregate protein molecules from large cellular structures such as protein assemblies, organelle membranes, and chromatin, and thus facilitate the degradation of released polypeptides by the multi-subunit protease proteasome.

The investigators reported in the August 26, 2016, online edition of the journal Nature Communications that VCP was selectively translocated to the mitochondria, where it was bound to mutant huntingtin protein in various HD models. VCP accumulated in mitochondria elicited excessive mitophagy (degradation of the mitochondria) and caused neuronal cell death.

Blocking huntingtin/VCP mitochondrial interaction with a peptide, HV-3, abolished VCP translocation to the mitochondria, corrected excessive mitophagy, and reduced cell death in HD mouse- and patient-derived cells and HD transgenic mouse brains. Treatment with HV-3 reduced behavioral and neuropathological phenotypes of HD in both fragment- and full-length huntingtin transgenic mice. These findings demonstrated a causal role of mutant huntingtin-induced VCP mitochondrial accumulation in HD pathogenesis and suggested that the peptide HV-3 might be a useful tool for developing new therapeutics to treat HD.

“Because mitochondrial dysfunction has been proposed to play an important role in the pathogenesis of Huntington’s disease, we investigated the binding proteins of mutant huntingtin on mitochondria,” said senior author Dr. Xin Qi, assistant professor of physiology and biophysics at Case Western Reserve University. “We found that VCP is a key player in mitochondria-associated autophagy, a mitochondria self-eating process. Over-accumulation of VCP on mitochondria thus results in a great loss of mitochondria, which leads to neuronal cell death due to lack of energy supply.”

Related Links:
Case Western Reserve University


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.