Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Reactivation of p53 Shrinks Tumors in Mouse Model

By LabMedica International staff writers
Posted on 27 Sep 2016
Blocking a protein that inhibits lysine acetylation reversed the inactivation of the p53 protein and resulted in shrinkage of tumors in a mouse xenograft model.

Most cancers fail to propagate unless the p53 gene is inactivated through mutation or if the p53 protein becomes inactivated. More...
Investigators at the Columbia University Medical Center (New York, NY, USA) looked for proteins involved in inhibition of p53 and of ways to counter their effect.

Toward this end, they used a proteomic screen that identified the oncoprotein SET as a major cellular factor whose binding with p53 was dependent on C-terminal domain acetylation status. Acetylation of the C-terminal domain (CTD) of p53 was an early example of non-histone protein acetylation and its precise role has remained unclear.

The protein encoded by the SET gene inhibits acetylation of nucleosomes, especially histone H4, by histone acetylases (HAT). This inhibition is most likely accomplished by masking histone lysines from being acetylated, and the consequence is to silence HAT-dependent transcription. The encoded protein is part of a complex localized to the endoplasmic reticulum but is found in the nucleus and inhibits apoptosis following attack by cytotoxic T lymphocytes.

The investigators reported in the September 14, 2016, online edition of the journal Nature that SET profoundly inhibited p53 transcriptional activity in unstressed cells, but that SET-mediated repression was abolished by stress-induced acetylation of p53 CTD. Moreover, loss of the interaction with SET activated p53, resulting in tumor regression in mouse xenograft models.

Senior author Dr. Wei Gu, professor of pathology and cell biology at the Columbia University Medical College, said, “In the presence of SET, tumors grow much bigger and faster, demonstrating that the p53-SET interaction plays a key role in regulating p53-mediated tumor suppression. Therefore, targeting SET by small molecules or chemical compounds in future may serve as a potential therapeutic strategy for those tumors containing wild-type p53.”

Related Links:
Columbia University Medical Center


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.