We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Overexpression of Genes May Predict Positive Response to Treatment

By LabMedica International staff writers
Posted on 14 Sep 2016
Overexpression of centromere (CEN) and kinetochore (KT) gene activity was linked to poor prognosis in several types of cancer, and a genetic signature based on 14 of these genes was shown to have potential for predicting both outcome of the disease and tumor response to chemotherapeutic and radiation treatments.

Chromosomal instability (CIN) is a hallmark of cancer that contributes to tumor heterogeneity and other malignant properties. More...
Abnormal CEN and KT function causes CIN through chromosome missegregation, leading to aneuploidy, rearrangements, and micronucleus formation.

In order to test the hypothesis that dysregulation of CEN/KT genes caused chromosomal abnormalities that contributed to tumor formation and could be used as a biomarker for predicting patient prognosis and response to therapy, investigators at the Lawrence Berkeley National Laboratory (Berkeley, CA, USA) focused on genes regulating the function of centromeres and kinetochores – the essential sites on chromosomes for spindle fiber attachment during cell division.

The investigators examined several public cancer databases that provided information on DNA mutations and chromosome rearrangements, the presence and levels of specific proteins, the stage of tumor growth at the time the patient was diagnosed, treatments given, and patient status in the years following diagnosis and treatment.

This information combined with the mapping of 31 genes involved in regulating centromere and kinetochore function enabled the investigators to generate a CEN/KT gene expression score (CES) based on patient outcomes either with or without treatments.

In a paper published in the August 31, 2016, online edition of the journal Nature Communications, the investigators reported that overexpression of 14 CEN/KT genes was observed consistently in a wide spectrum of cancer types and correlated with the level of genomic instability in diverse tumors and with adverse tumor properties in a cancer-type-specific manner. High CES values correlated with increased levels of genomic instability and several specific adverse tumor properties, and indicated poor patient survival for breast and lung cancers, especially early-stage tumors.

In contrast, the high degree of chromosomal instability rendered cancer cells more vulnerable to the effects of chemotherapy or radiation therapy, and the CES signature could be used to predict whether such therapy was likely to be effective.

“The overexpression of a specific centromere protein resulted in extra spindle attachment sites on the chromosomes,” said senior author Dr. Gary Karpen, senior researcher in the division of biological systems and engineering at the Lawrence Berkeley National Laboratory. “This essentially makes new centromeres functional at more than one place on the chromosome, and this is a huge problem because the spindle tries to connect to all the sites. If you have two or more of these sites on the chromosome, the spindles are pulling in too many directions, and you end up breaking the chromosome during cell division. So overexpression of these genes may be a major contributing factor to chromosomal instability, which is a hallmark of all cancers.”

“The history of cancer treatment is filled with overreaction,” said Dr. Karpen. “It is part of the ethics of cancer treatment to err on the side of over treatment, but these treatments have serious side effects associated with them. For some people, it may be causing more trouble than if the growth was left untreated.”

Related Links:
Lawrence Berkeley National Laboratory


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.