We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Human Liver Organoids Thrive When Transplanted into Mouse Liver Failure Model

By LabMedica International staff writers
Posted on 13 Sep 2016
Liver disease researchers have demonstrated in a mouse model that it may be feasible to treat some types of liver failure with transplanted multicellular liver organoid units composed of a heterogeneous cellular population that includes adult stem and progenitor cells.

Liver disease affects large numbers of patients, yet there are limited treatments available to replace absent or ineffective cellular function of this crucial organ. More...
The only effective therapy for end-stage liver failure is liver transplantation, which is profoundly limited by scarce donor supply and the necessity for life-long immunosuppression treatment. On the other hand, in some conditions, such as inborn errors of metabolism or transient states of liver insufficiency, patients may be treated by providing partial quantities of functional liver tissue.

In order to develop a robust means for transplanting functional donor liver tissue, investigators at The Saban Research Institute of Children's Hospital Los Angeles (CA, USA) transplanted multicellular human or mouse liver organoid units composed of a heterogeneous cellular population that included adult stem and progenitor cells into a mouse model of inducible liver failure.

They reported in the August 30, 2016, online edition of the journal Stem Cells Translational Medicine that both mouse and human tissue-engineered liver (TELi) formed in the animals. TELi contained normal liver components such as hepatocytes with albumin expression, CK19-expressing bile ducts and vascular structures with alpha-smooth muscle actin expression, desmin-expressing stellate cells, and CD31-expressing endothelial cells. After four weeks, TELi contained proliferating albumin-expressing cells, and identification of beta-2-microglobulin-expressing cells demonstrated that the majority of human TELi in the mice was composed of transplanted human cells. Human albumin was detected in the host mouse serum, indicating the development of in vivo secretory function.

"Based on the success in my lab generating tissue-engineered intestine and other cell types, we hypothesized that by modifying the protocol used to generate intestine, we would be able to develop liver organoid units that could generate functional tissue-engineered liver when transplanted," said senior author Dr. Tracy C. Grikscheit, professor of surgery at The Saban Research Institute of Children's Hospital Los Angeles.

Related Links:
The Saban Research Institute of Children's Hospital Los Angeles


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.