We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




High-Resolution Analysis of Leishmanial Ribosome Provides Clues for Drug Design

By LabMedica International staff writers
Posted on 08 Sep 2016
Derived from a 2.8-Å cryo-EM map, researchers have achieved an atomic resolution structure of the Leishmania donovani large ribosomal subunit (rLSU). More...
Comparison with other eukaryotes and with bacteria provides an important framework for better understanding ribosome biogenesis and a solid structural basis for developing highly selective therapeutics against Leishmania and closely related parasites.

Leishmania is a single-cell eukaryotic parasite of the Trypanosomatidae family of microbes, whose members cause various debilitating and often fatal diseases. A team of researchers from the Weizmann Institute of Science (Rehovot, Israel), University of Michigan Life Sciences Institute (Ann Arbor, MI, USA), and Hebrew University-Hadassah Medical School (Jerusalem, Israel), have now obtained the first high-resolution snapshots of the parasites’ ribosome, providing a detailed structural map of the rLSU.

The unique features that make the Trypanosomatid ribosome distinct from other eukaryotes are what make it such an attractive drug target as “you need to be able to attack the pathogen without harming the host’s cells,” said study co-leader Prof. Georgios Skiniotis, PhD, U. Michigan. Study co-leader Prof. and 2009 Nobel Laureate Ada Yonath, PhD, Weizmann Institute, added: Previous studies were able to obtain resolutions of 5.6 angstroms and 12 angstroms. The new study obtained a resolution of 2.8 angstroms — which revealed a nearly complete atomic structure and new functional details.

Among other findings, the work enabled direct observation of eukaryotic rRNA modifications (e.g. 2’-O methylations) known to play roles in ribosome assembly and function. These observations showed that leishmanial rRNA is fragmented and hyper-modified at unique positions and that fragmented rRNA termini converge into three focal points involving 5.8S.

The study, by Shalev-Benami M, Zhang Y, et al, was published in the July 12, 2016, issue of the journal Cell Reports.

Related Links:
Weizmann Institute of Science
University of Michigan Life Sciences Institute
Hebrew University-Hadassah Medical School

Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.