We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Malignant Melanoma Releases MicroRNAs to Condition the Dermis Prior to Metastasis

By LabMedica International staff writers
Posted on 01 Sep 2016
Cancer researchers have discovered that prior to spreading, malignant melanoma sends out packets of microRNAs to induce morphological changes in the dermis to prepare that tissue to receive and transport the cancer cells.

Melanoma originates in the epidermis and becomes metastatic after invasion into the dermis. More...
However, the interaction between melanoma cells and dermis has not been well studied.

Investigators at Tel Aviv University (Israel) have significantly changed that situation with their report, published in the August 22, 2016, online edition of the journal Nature Cell Biology, that melanoma cells directly affected the formation of the dermal tumor niche by microRNA trafficking before invasion.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Melanocytes, cells of melanoma origin, are specialized in releasing pigment vesicles, termed melanosomes. In melanoma in situ, the investigators found melanosome markers in distal fibroblasts before melanoma invasion. The melanosomes carried microRNAs into primary fibroblasts triggering changes, including increased proliferation, migration, and pro-inflammatory gene expression, all known features of cancer-associated fibroblasts (CAFs). Specifically, melanosomal microRNA-211 directly targeted IGF2R (Insulin-like growth factor 2 receptor) and led to MAPK (Mitogen-activated protein kinase) signaling activation, which reciprocally encouraged melanoma growth.

The investigators identified two compounds that could prevent conditioning of the dermis by melanosome miRNAs. These potential drugs were SB202190, which inhibited the delivery of the melanosomes from the tumor to the dermis, and U0126, which prevented the morphological changes in the dermis even after the arrival of the melanosomes.

"The threat of melanoma is not in the initial tumor that appears on the skin, but rather in its metastasis - in the tumor cells sent off to colonize in vital organs like the brain, lungs, liver, and bones," said senior author Dr. Carmit Levy, researcher in the department of human molecular genetics and biochemistry at Tel Aviv University. "We have discovered how the cancer spreads to distant organs and found ways to stop the process before the metastatic stage. Our study is an important step on the road to a full remedy for the deadliest skin cancer. We hope that our findings will help turn melanoma into a nonthreatening, easily curable disease."

Related Links:
Tel Aviv University


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Procalcitonin Test
LIAISON B•R•A•H•M•S PCT II GEN
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.