Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Normal Prion Protein Maintains Myelin Integrity in Nervous System

By LabMedica International staff writers
Posted on 17 Aug 2016
Researchers studying chronic diseases of the brain have determined the function and mode of operation of the cellular prion protein PrPC, which in its cytotoxic form underlies prion diseases such as spongiform encephalopathy (mad cow disease) and its human counterpart, variant Creutzfeldt-Jakob disease.

Previous studies conducted by investigators at the University of Zurich (Switzerland) demonstrated that mice lacking PrPC had disruptions in the myeloid sheath, the insulating material derived from Schwann cells that surrounds nervous system axons, but the reasons for the disruptions were unclear.

In the current study, the University of Zurich researchers collaborated with investigators from the Washington University School of Medicine (St. More...
Louis, MO, USA) to determine the role and mode of action of normal PrPC.

The investigators reported in the August 8, 2016, online edition of the journal Nature that the cAMP concentration in sciatic nerves from PrPC-deficient mice was reduced, suggesting that PrPC acted via a G protein-coupled receptor (GPCR).

Working with mouse and zebrafish models, the investigators showed that PrPC attached to a GPCR on Schwann cells called Gpr126. The amino-terminal flexible tail (residues 23–120) of PrPC triggered a concentration-dependent increase in cAMP in primary Schwann cells, in the Schwann cell line SW10, and in HEK293T cells that over expressed Gpr126. By contrast, naive HEK293T cells and HEK293T cells expressing different GPCRs did not react to the flexible tail, and removal of Gpr126 from SW10 cells abolished the flexible tail-induced cAMP response.

“Previous studies have suggested a role for prion proteins in maintaining neurons, but until now, no one knew how the properly folded versions of the proteins function,” said contributing author Dr. Kelly R. Monk, associate professor of developmental biology at Washington University School of Medicine. “It is surprising to see that the protein has a role in maintaining the structure of nerve cells, considering that a misfolded version of PrPC is known to cause fatal brain diseases.”

“We have identified a definitive function for the normal prion protein and clarified how it works on a molecular level,” said senior author Dr. Adriano Aguzzi, professor of neuropathology at the University of Zurich. “Our study answers a question that has been intensely researched since the prion gene’s discovery in 1985.”

Related Links:
University of Zurich
Washington University School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.