Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Organ-on-a-Chip Device Mimics Structure and Function of Human Placental Barrier

By LabMedica International staff writers
Posted on 09 Aug 2016
A novel lab-on-a-chip device mimics the structure and function of the human placental barrier and allows researchers to carry out in vitro studies on factors influencing fetal development.

During human pregnancy, the fetal circulation is separated from maternal blood in the placenta by two cell layers – the fetal capillary endothelium and placental trophoblast. More...
This placental barrier plays an essential role in fetal development and health by tightly regulating the exchange of endogenous and exogenous materials between the mother and the fetus.

To mimic the characteristic architecture of the human placental barrier, investigators at the University of Pennsylvania (Philadelphia, USA) created on a silicon chip a multilayered microfluidic system that enabled co-culture of human trophoblast cells and human fetal endothelial cells in a physiologically relevant spatial arrangement. The device comprised two parallel microfluidic channels separated by a porous membrane. On one side of those pores, trophoblast cells, which are found at the placental interface with maternal blood, were grown. On the other side were endothelial cells, found on the interior of fetal blood vessels.

The co-culture model was designed to induce progressive fusion of trophoblast cells and to form a syncytialized epithelium that resembled the in vivo syncytiotrophoblast. The system also allowed the cultured trophoblasts to form dense microvilli under dynamic flow conditions and to reconstitute expression and physiological localization of membrane transport proteins, such as glucose transporters (GLUTs), critical to the barrier function of the placenta.

In a proof-of-principle study, the investigators used the "placenta-on-a-chip" device to demonstrate physiological transport of glucose across the artificial maternal-fetal interface. They reported in the May 20, 2016, online edition of the journal Lab on a Chip that the rate of maternal-to-fetal glucose transfer in this system closely approximated that measured in ex vivo perfused human placentas.

"The placenta is arguably the least understood organ in the human body," said senior author Dr. Dongeun Huh, professor of bioengineering at the University of Pennsylvania, "and much remains to be learned about how transport between mother and fetus works at the tissue, cellular, and molecular levels. An isolated whole organ is not an ideal platform for these types of mechanistic studies. "

"The placental cells change over the course of pregnancy," said Dr. Huh. "During pregnancy, the placental trophoblast cells actually fuse with one another to form an interesting tissue called syncytium. The barrier also becomes thinner as the pregnancy progresses, and with our new model we are able to reproduce this change. Eventually, we hope to leverage the unique capabilities of our model to demonstrate the potential of organ-on-a-chip technology as a new strategy to innovate basic and translational research in reproductive biology and medicine."

Related Links:
University of Pennsylvania



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.