We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Method Described for Blocking Action of Cancer-Promoting MicroRNA

By LabMedica International staff writers
Posted on 08 Aug 2016
A team of molecular biologists has described a novel method for selectively blocking the activity of a cancer-promoting microRNA.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. More...
Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

In order to block the activity of the miRNA miR-21, which is present in high levels in many tumors where it increases the expression of cancer-promoting genes and decreases cancer suppressors, investigators at the University of Washington (Seattle, USA) manipulated the specificity of the RNA recognition motif (RRM) of the protein Rbfox2 (RNA binding protein, fox-1 homolog 2). They did this by engineering the conserved RRM of the Rbfox2 protein to specifically bind to the terminal loop of the microRNA precursor (pre-miR-21) with high affinity.

The modified pre-miR-21 could not be processed by the enzyme Dicer. Dicer, which is encoded by the DICER1 gene, trims double stranded RNA, to form small interfering RNA (siRNA) or microRNA (miRNA). These processed RNAs are incorporated into the RNA-induced silencing complex (RISC), which targets messenger RNA to prevent translation.

In a separate series of experiments the investigators attached the miR-21 binding regions of Rbfox2 onto the Dicer enzyme. This hybrid Rbfox2-Dicer protein sliced miR-21 into inactive fragments. Results published in the July 18, 2016, online edition of the journal Nature Chemical Biology revealed that the hybrid enzyme degraded pre-miR-21 specifically in vitro and suppressed mature miR-21 levels in cells, which resulted in increased expression of the tumor suppressor PDCD4 and significantly decreased viability for cancer cells.

"What we show here is a proving ground - a process to determine how to make the correct changes to proteins," said senior author Dr. Gabriele Varani, professor of chemistry at the University of Washington. "This method relies on knowledge of high-quality structures. That allowed us to see which alterations would change binding to the microRNA target."

Related Links:
University of Washington



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.