We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Bladder Cells Use Exocytosis to Fight Urinary Tract Infections

By LabMedica International staff writers
Posted on 02 Aug 2016
A team of molecular microbiologists has identified a method used by the cells lining the bladder to protect themselves against urinary tract pathogens by packaging bacteria into vesicles that are expelled from the cytoplasm. More...


Investigators at Duke University (Durham, NC, USA) and colleagues at the National University of Singapore (Singapore) worked with mice and cultured human bladder cells to study the mechanism used by the bladder to fight off urinary tract infection (UTI).

They reported in the July 19, 2016, online edition of the journal Immunity that infected bladder epithelial cells (BECs) mobilized the exocyst complex, a powerful exporter of subcellular vesicles, to rapidly expel intracellular bacteria back for clearance. In this process, called exocytosis, membrane-bound secretory vesicles are carried to the cell membrane, and their contents (water-soluble molecules such as proteins) are secreted into the extracellular environment. This secretion is possible because the vesicle transiently fuses with the outer cell membrane.

While the investigators had previously reported that expulsion of harmful bacteria was partially mediated by lysosomes, cellular structures that ordinarily degrade waste, this was the first report of bacterial expulsion via exocytosis. In addition, this process was linked to action of the compound Forskolin, which has a strong impact on urinary tract infections, even in the absence of antibiotics. Forskolin activates the enzyme adenylyl cyclase and increases intracellular levels of cAMP, an important second messenger necessary for the proper biological response of cells to hormones and other extracellular signals.

"There is growing interest in identifying new ways to fight UTIs, as bacteria are becoming increasingly resistant to antibiotics," said senior author Dr. Soman Abraham, professor of pathology, immunology, microbiology, and molecular genetics at Duke University. "In the past, we identified a plant extract called Forskolin, which has a strong impact on UTIs, even in the absence of antibiotics. Unfortunately, we did not understand how it worked. These latest findings could provide the key to how the herb effectively combats UTIs. If this link can be established, we could help advance the case for testing the herb and other similar-acting drugs as a potential new treatment for UTIs."

Related Links:
Duke University
National University of Singapore

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.