We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Treatment Uses Bacteria Engineered to Delivery Pulses of Anti-Cancer Drugs

By LabMedica International staff writers
Posted on 01 Aug 2016
A novel method for treating liver tumors is based on genetically engineered bacteria that respond to population pressure by lysing and releasing pulses of anti-cancer drugs.

Some bacteria have evolved to preferentially grow in environments that harbor disease, such as the oxygen-depleted tumor microenvironment, and thus provide an attractive platform for the development of engineered therapies. More...
Such therapies could benefit from bacteria that were programmed to limit bacterial growth while continually producing and releasing cytotoxic agents.

In pursuing this concept, investigators at the Massachusetts Institute of Technology (Cambridge, MA, USA) and collaborators at the University of California, San Diego, (USA) engineered a clinically relevant bacterial "circuit" that would lyse synchronously at a threshold population density and release genetically encoded cargo. Following quorum lysis, a small number of surviving bacteria initiated a newly growing population, thus leading to waves of delivery cycles.

The investigators used microfluidic devices to characterize the engineered lysis strain, and they demonstrated its potential as a drug delivery platform via co-culture with human cancer cells in vitro. As a proof of principle, they tracked the bacterial population dynamics in colorectal tumors in mice via a luminescent reporter protein.

In a separate experiment, the investigators orally administered the lysis strain alone or in combination with a clinical chemotherapeutic agent to a syngeneic mouse transplantation model of colorectal cancer that had spread to the liver. They reported in the July 20, 2016, online edition of the journal Nature that the combination of both engineered bacteria and chemotherapy led to a notable reduction of tumor activity along with a marked survival benefit over either therapy alone. Engineered bacteria that escaped from the liver were effectively cleared by the immune system, which helped to minimize potential side effects.

“Tumors can be friendly environments for bacteria to grow, and we are taking advantage of that,” said contributing author Dr. Sangeeta Bhatia, professor of health sciences, electrical engineering, and computer science at the Massachusetts Institute of Technology.

Related Links:
Massachusetts Institute of Technology
University of California, San Diego

Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.