We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blocking Formation of Scar Tissue Increases Susceptibility of Pancreatic Cancer to Immunotherapy

By LabMedica International staff writers
Posted on 13 Jul 2016
Cancer researchers have shown that treatment with a focal adhesion kinase (FAK) inhibitor rendered pancreatic cancer tumors susceptible to immunotherapy in a mouse model of the disease.

To date immunotherapy has achieved only limited clinical benefits in patients with pancreatic ductal adenocarcinoma (PDAC). More...
This may be a result of the presence of a uniquely immunosuppressive tumor microenvironment (TME) characterized by a high number of tumor-associated immunosuppressive cells and a scar-like stroma that surrounds the tumor and functions as a barrier to T-cell infiltration.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) reported in the July 4, 2016, online edition of the journal Nature Medicine that hyperactivated focal adhesion kinase (FAK) activity was present in neoplastic PDAC cells and acted as an important regulator of the fibrotic and immunosuppressive TME. FAK activity was elevated in human PDAC tissues and correlated with high levels of fibrosis and poor cytotoxic T-cell infiltration.

To block formation of the scar tissue preventing T-cell infiltration, the investigators treated a pancreatic cancer mouse model with the selective FAK inhibitor VS-4718. They found that this treatment substantially limited tumor progression, resulting in a doubling of survival time in the mouse model of human PDAC. This delay in tumor progression was associated with markedly reduced tumor fibrosis and decreased numbers of tumor-infiltrating immunosuppressive cells.

The investigators also found that FAK inhibition rendered the previously unresponsive mouse model responsive to T-cell immunotherapy and PD-1 antagonistic chemotherapeutic agents. A three-drug combination of FAK inhibitor, immune therapy, and chemotherapy more than tripled survival times in some mice.

"Pancreatic tumors are notoriously unresponsive to both conventional chemotherapy and newer forms of immunotherapeutics," said senior author Dr. David G. DeNardo, assistant professor of medicine at the Washington University School of Medicine. "We suspect that the fibrous environment of the tumor that is typical of pancreatic cancer may be responsible for the poor response to immune therapies that have been effective in other types of cancer."

"Proteins called focal adhesion kinases are known to be involved in the formation of fibrous tissue in many diseases, not just cancer," said Dr. DeNardo. "So we hypothesized that blocking this pathway might diminish fibrosis and immunosuppression in pancreatic cancer."

Related Links:
Washington University School of Medicine



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.