Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Toxic Clumps of Alpha-Synuclein Disrupt Function in Parkinson's Disease Neurons

By LabMedica International staff writers
Posted on 21 Jun 2016
Neurodegenerative disease researchers have found that some symptoms of Parkinson's disease (PD) are caused by the deleterious effect of toxic clumps of alpha-synuclein on mitochondrial function.

The accumulation of misfolded alpha-synuclein amyloid fibrils leads to the formation of insoluble aggregates that have been implicated in several neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies, and Alzheimer's disease. More...
It has been exceedingly difficult to define the structure of alpha-synuclein fibrils due to their insolubility and complexity.

Alpha-synuclein accumulation and mitochondrial dysfunction have both been strongly implicated in the pathogenesis of PD, and the two appear to be related. Mitochondrial dysfunction leads to accumulation and oligomerization of alpha-synuclein, and increased levels of alpha-synuclein cause mitochondrial impairment, but the basis for this bidirectional interaction remains obscure.

Investigators at the University of Pittsburgh School of Medicine (PA, USA) worked with a well-established rodent model of PD to show how alpha-synuclein disrupted mitochondrial function. They reported in the June 8, 2016, online edition of the journal Science Translational Medicine that specific forms of wild-type alpha-synuclein, such as oligomeric and dopamine-modified forms, but not the monomeric or fibrillar forms, bound with high affinity to the mitochondrial receptor TOM20 (Mitochondrial import receptor subunit TOM20 homolog).

This binding disrupted import of proteins required for mitochondrial function and led to senescence of mitochondria, which showed reduced respiration and increased production of reactive oxygen species.

Examination of postmortem brain tissue from PD patients revealed an aberrant alpha-synuclein–TOM20 interaction in nigrostriatal dopaminergic neurons that was associated with loss of imported mitochondrial proteins, thereby confirming this pathogenic process in the human disease.

"It is really exciting that we have found a mechanism we can target to create new treatments for this devastating disease," said senior author Dr. J. Timothy Greenamyre, professor of neurology at the University of Pittsburgh School of Medicine. "Ultimately, the interaction between alpha-synuclein and TOM20 leads to neurodegeneration. The effects of alpha-synuclein on mitochondria are like making a perfectly good coal-fueled power plant extremely inefficient, so it not only fails to make enough electricity, but also creates too much toxic pollution."

Related Links:
University of Pittsburgh School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Blood Ammonia Test Analyzer
DRI-CHEM NX10N
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.