We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Study Shows HOXA5 Impedes Breast Cancer Tumor Initiation and Progression

By LabMedica International staff writers
Posted on 07 Jun 2016
A team of cancer researchers has discovered that the HOXA5 (Homeobox protein Hox-A5) gene, which is not found in many breast cancers, acts as a tumor suppressor by regulating E-cadherin and CD24.

Loss of HOXA5 expression occurs frequently in breast cancer and correlates with higher pathological grade and poorer disease outcome. More...
However, how HOX proteins drive differentiation in mammalian cells is poorly understood.

In order to better understand how HOXA5 works, investigators at Johns Hopkins University (Baltimore, MD, USA) evaluated the cellular and molecular consequences of the loss of HOXA5 in breast cancer development and growth.

They reported in the May 9, 2016, online edition of the journal Oncogene that analysis of global gene expression data from HOXA5-depleted MCF10A breast epithelial cells pointed to a role for HOXA5 in maintaining several molecular traits typical of the epithelial lineage such as cell-cell adhesion, tight junctions, and markers of differentiation. Depleting HOXA5 in immortalized MCF10A or transformed MCF10A-Kras breast cancer cells enhanced their self-renewal capacity and reduced expression of E-cadherin and CD24.

Cadherins (named for “calcium-dependent adhesion”) are a class of type-I transmembrane proteins. They play important roles in cell adhesion, ensuring that cells within tissues are bound together. Loss of E-cadherin function or expression has been implicated in cancer progression and metastasis. E-cadherin downregulation decreases the strength of cellular adhesion within a tissue, resulting in an increase in cellular motility. This in turn may allow cancer cells to cross the basement membrane and invade surrounding tissues.

The CD24 cell adhesion molecule is a glycoprotein expressed at the surface of most B-lymphocytes and differentiating neuroblasts. This gene encodes a sialoglycoprotein that is expressed on mature granulocytes and in many B-cells. The encoded protein is anchored via a glycosyl phosphatidylinositol (GPI) link to the cell surface.

Depletion of HOXA5 in mammary cells was found to lead to loss of epithelial traits, an increase in stem cell-like characteristics and cell plasticity, and the acquisition of more aggressive phenotypes.

“Learning more about the biological impact of the HOXA5 protein, which is absent so frequently in breast cancers, may eventually help scientists develop new therapies to treat this disease,” said senior author Dr. Saraswati Sukumar, professor of oncology and pathology at Johns Hopkins University. “HOXA5 regulates the production of two other proteins: CD24 and E-cadherin. Without CD24, the cells begin to revert toward a stem-like state, and without E-cadherin, cells lose some of the “glue” that binds them to other cells.”

Related Links:
Johns Hopkins University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.