Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Rapid Injection Technique Improves Production of Genetically Engineered Mice

By LabMedica International staff writers
Posted on 06 Jun 2016
An electroporation method has been introduced that improves the production of genetically altered "knock-out" mice by requiring less time and being more efficient at introducing the CRISPR-Cas9 genome editing complex than is the current microinjection method.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. More...
Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. The CRISPR/Cas complex comprises a prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 protein and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR-Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

CRISPR-mediated mouse genome editing is typically accomplished by microinjection of Cas9 DNA/RNA and single-guide RNA into zygotes to generate modified animals in one step. However, microinjection is a technically demanding, labor-intensive, and costly procedure with poor embryo viability. In practice, the microinjection method requires inoculation of individual cells or embryos with two RNA molecules - messenger RNA (mRNA), which codes for the Cas9 protein, and guide RNA, which provides the address for CRISPR-Cas9's target. In only a small percentage of cells the mRNA is properly translated into Cas9 protein, and the protein correctly combines with the guide RNA.

Electroporation relies on a burst of electricity to create holes in cells or embryos through which molecules can enter. Investigators at the University of California, Berkeley (USA) recently described a novel adaptation of the technique, which they called CRISPR-EZ (CRISPR RNP Electroporation of Zygotes). They described this simple and cost-effective methodology, which can be performed on many embryos at once and takes only milliseconds to perform in the May 5, 2016, online edition of the Journal of Biological Chemistry.

Using CRISPR-EZ, which could deliver Cas9/sgRNA ribonucleoproteins (RNPs) into mouse zygotes with 100% efficiency, the investigators generated a variety of editing schemes in mouse embryos, including indel (insertion/deletion) mutations, point mutations, large deletions, and small insertions. In a proof-of-principle experiment, they used CRISPR-EZ to target the Tyrosinase (Tyr) gene, achieving 88% bi-allelic editing and 42% Homology-Directed Repair (HDR)-mediated precise sequence modification in live mice.

"The key fundamental insights about the biological significance of a gene usually come from in vivo gene-editing studies, in which you generate mice with an altered gene," said senior author Dr. Lin He, a associate professor of molecular and cell biology at the University of California, Berkeley. "But it is a major commitment to make a novel knockout with genome engineering. I think this technology could greatly reduce the technical barrier for this type of effort and will allow people to focus more on the science rather than be consumed by the process of genetically engineering mice."

"The actual percentage of live births from injected embryos is around 10 to 15% for most transgenic facilities, which is a problem with the procedure," said Dr. He. "Sometimes people collect more than 100 embryos just to generate one or two mice with desirable gene editing. Electroporation appears to do less damage to the embryos than microinjection: between 30% and 50% of the embryos resulted in live births."

Related Links:
University of California, Berkeley


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.