Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Mutant Protein Aggregates Drive Progression of ALS in Mouse Model

By LabMedica International staff writers
Posted on 16 May 2016
Researchers working with a mouse model of amyotrophic lateral sclerosis (ALS) have demonstrated that aggregates of mutated superoxide dismutase 1 (SOD1) can propagate the disease by progressing through nerve cells along the animal's spinal cord.

ALS is a specific disorder that involves the death of neurons. More...
The disease, for which there is no cure, is characterized by stiff muscles, muscle twitching, and gradually worsening weakness due to muscles decreasing in size. Most ALS sufferers die from respiratory failure.

It has been shown that at the molecular level ALS was frequently caused by mutations in the gene encoding SOD1. Both patients and Tg mice expressing mutant human SOD1 (hSOD1) developed aggregates of unknown importance. In Tg mice, two different strains of hSOD1 aggregates (denoted A and B) have been identified; however, the role of these aggregates in disease pathogenesis has not been fully characterized.

Investigators at Umeå University (Sweden) prepared A and B hSOD1 strain aggregates by centrifugation through a density cushion. They then inoculated minute seeds of these substances into the lumbar spinal cords of 100-day-old mice carrying a human SOD1 Tg mutation.

Results published in the May 3, 2016, online edition of the Journal of Clinical Investigation revealed that mice seeded with A or B aggregates developed premature signs of ALS and became terminally ill after approximately 100 days, which was 200 days earlier than for mice that had not been inoculated or were given a control preparation. At the same time, exponentially growing strain A and B hSOD1 aggregations propagated throughout the spinal cord and brainstem, which resulted in the eventual death of the mice.

"The occurrence of SOD1 aggregates in nerve cells in ALS patients has been known for a while," said senior author Dr. Thomas Brännström, professor of pathology at Umeå University. "But it has long been unclear what role the SOD1 aggregates play in the disease progression in humans carrying hereditary traits for ALS. We have now been able to show that the SOD1 aggregates start a domino effect that rapidly spreads the disease up through the spinal cord of mice. We suspect that this could be the case for humans as well."

Related Links:
Umeå University


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.