We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




X-Ray Crystallography Reveals Structure of the Arenavirus Binding Complex

By LabMedica International staff writers
Posted on 11 May 2016
A team of molecular virologists has established the three-dimensional structure of the intensely studied research tool, Lymphocytic choriomeningitis mammarenavirus (LCMV).

LCMV and the closely related, but much deadlier Lassa fever virus are arenaviruses, which exist worldwide and cause hemorrhagic fevers and neurological disease. More...
These viruses are characterized by a single glycoprotein expressed on the viral surface that mediates entry into target cells. This glycoprotein, termed GPC, contains a membrane-associated signal peptide, a receptor-binding subunit termed GP1, and a fusion-mediating subunit termed GP2. Although GPC is a critical target of antibodies and vaccines, the structure of the metastable GP1-GP2 prefusion complex has remained undetermined for all arenaviruses.

When LCMV attacks a cell, attachment of the virus to host receptors through its surface glycoproteins initiates the process of replication. The virus is encapsulated into a vesicle inside the host cell, which creates a fusion of the virus and vesicle membranes. The viral ribonucleocapsid is then released into the cytoplasm of the host cell. The RNA-dependent, RNA-polymerase brought along with the virus initially binds to a promoter and begins transcription from negative-stranded to a positive-stranded mRNA. The formation of a strong hairpin sequence at the end of each gene terminates transcription. The mRNA strands are capped by the RNA-dependent, RNA-polymerase in the cytoplasm and are then subsequently translated into the four proteins essential for LCMV assembly. The ribonucleocapsid interacts with the Z matrix protein and buds on the cell membrane, releasing the virion to exit the infected cell.

In a paper published in the April 25, 2016, online edition of the journal Nature Structural & Molecular Biology, investigators at The Scripps Research Institute (La Jolla, CA, USA) described results of a long-term X-ray crystallography study that elucidated the crystal structure of the fully glycosylated prefusion GP1-GP2 complex of LCMV at a resolution of .35 nm.

The "double dimer" structure that was obtained revealed the conformational changes that the arenavirus glycoprotein must undergo to cause fusion and illustrated the fusion regions and potential oligomeric states.

"LCMV has been a beacon that has illuminated immunology and virology for decades," said senior author Dr. Erica Ollmann Saphire, professor of immunology and microbial science at The Scripps Research Institute. "This structure provides the missing roadmap to understand how to defend against its extremely lethal cousin, Lassa virus. It has moving parts. LCMV now looks like it sits between class I and class II viruses, making this structure a possible "fossil" of an intermediate evolutionary process."

Related Links:
The Scripps Research Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.