Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Carbon Nanotube-Based Device Efficiently Transports Nucleic Acids into Cell Cultures

By LabMedica International staff writers
Posted on 25 Apr 2016
A novel device based on carbon nanotubes arranged in "honeycomb-like" structures was used to safely and efficiently transfer genetic material into cultures of different types of human and animal cells.

The introduction of nucleic acids into mammalian cells is a crucial step toward elucidating biochemical pathways and for modifying gene expression and cellular development in immortalized cells, primary cells, and stem cells. More...
Current transfection technologies—such as electrical pulse, gene gun inoculation, and employing viral infection—are time consuming and limited by the size of the genetic cargo that can be transferred, the inefficient introduction of test molecules into large populations of target cells, and the cytotoxicity of the techniques.

Investigators at the University of Rochester (NY, USA) have reported the development of a novel method of introducing genes and biomolecules into tens of thousands of mammalian cells through an array of aligned hollow carbon nanotubes. The device was prepared using the process of chemical vapor deposition that resulted in a structure resembling a nano-sized honeycomb consisting of millions of densely packed carbon nanotubes with openings on both sides of a thin disk shaped membrane.

In a paper published in the April 5, 2016, online edition of the journal Small, the investigators described using the device to culture a series of different human and animal cells. After 48 hours, the cells were bathed in a DNA-enriched liquid medium. The carbon nanotubes acted as conduits drawing the genetic material into the cells in a mild fashion that preserved 98% of the cells with 85% successfully transfected with the new genetic material.

"This represents a very simple, inexpensive, and efficient process that is well tolerated by cells and can successfully deliver DNA into tens of thousands of cells simultaneously," said senior author Dr. Michael Schrlau, assistant professor of engineering at the University of Rochester.

Related Links:
University of Rochester


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.