We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cholesterol Analogs Block Growth of Tuberculosis Bacteria

By LabMedica International staff writers
Posted on 21 Apr 2016
Analogs of cholesterol that have been modified by the addition of non- degradable side chains have been shown to inhibit the growth of Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB).

Investigators at the University of Queensland (Brisbane, Australia) and the University of California, San Francisco (USA) had previously found that the cholesterol derivative cholest-4-en-3-one, whether added or generated intracellularly from cholesterol, inhibited the growth of M. More...
tuberculosis when the cytochrome P450 enzymes (CYP125A1 and CYP142A1) that initiate degradation of the sterol side chain were disabled.

Continuing this line of research, they reported in the April 1, 2016, issue of the Journal of Biological Chemistry that a 16-hydroxy derivative of cholesterol, which was previously shown to inhibit growth of M. tuberculosis, acted by preventing the oxidation of the sterol side chain even in the presence of the relevant cytochrome P450 enzymes. The finding that (25R)-cholest-5-en-3beta,16beta,26-triol (1) (and its 3-keto metabolite) inhibited growth suggested that cholesterol analogs with non-degradable side chains represented a novel class of anti- mycobacterial agents.

To confirm this speculation, the investigators synthesized two cholesterol analogs with truncated, fluorinated side chains and demonstrated that these compounds could block the growth of M. tuberculosis in culture.

Contributing author Dr. James De Voss, professor of chemistry and molecular biosciences at the University of Queensland said, "If you give this bacterium modified cholesterol instead, then it cannot use it as its energy source and so it stops growing. Interestingly, we do not quite understand why this happens. Our discovery suggests a new way in which we can robustly inhibit growth of the TB bacterium."

Related Links:
University of Queensland
University of California, San Francisco


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.