Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Microneedle Delivery of Beta-Cells Avoids Host Immune Rejection

By LabMedica International staff writers
Posted on 28 Mar 2016
A novel skin patch filled with living insulin-secreting beta cells was shown to regulate glucose levels in a mouse diabetes model for up to 10 hours while avoiding adverse immune responses.

Attempts to treat diabetes by transplanting beta-cells have not been particularly successful, since most transplants are rejected and the medications used to suppress the immune system interfere with the activity of beta cells and insulin.

Investigators at the University of North Carolina (Chapel Hill, USA) and North Carolina State University (Raleigh, USA) devised a way to protect foreign beta cells from attack by the immune system.

They described in the March 1, 2016, online edition of the journal Advanced Materials an innovative microneedle (MN)-based cell therapy device that enabled glucose-responsive regulation of the insulin secretion from exogenous pancreatic beta-cells without implantation.

The device was a synthetic patch comprising hundreds of biocompatible microneedles, each packed with thousands of alginate encapsulated beta-cells and culture media. More...
When applied to the skin, the microneedles pierced capillaries and dermal blood vessels, forming a connection between the internal environment and the external cells of the patch that enabled diffusion of insulin from the patch into the skin.

Results revealed that one microneedle patch quickly reduced the blood-sugar levels (BGLs) of chemically induced type-1 diabetic mice and stabilized BGLs at a reduced level for over 10 hours. Repeated administration of the patch did not result in excess doses of insulin and did not induce hypoglycemia. Rather, application of a second patch extended the life of the treatment to 20 hours.

“This study provides a potential solution for the tough problem of rejection, which has long plagued studies on pancreatic cell transplants for diabetes,” said senior author Dr. Zhen Gu, assistant professor of biomedical engineering at the University of North Carolina. “Plus, it demonstrates that we can build a bridge between the physiological signals within the body and these therapeutic cells outside the body to keep glucose levels under control.”

Related Links:

University of North Carolina
North Carolina State University



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.