Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




3D Network Structures Improve Survival of Transplanted Stem Cell-Derived Neurons

By LabMedica International staff writers
Posted on 27 Mar 2016
Neurological disease researchers have developed a method for treating neurodegenerative diseases such as Parkinson's by transplanting three-dimensional (3D) networks of stem cell-derived neurons into the damaged brain tissue.

Cell replacement therapy using human pluripotent stem cell-derived neurons has the potential to correct neurodegenerative damage and central nervous system injuries, but transplantation of dissociated and spatially disorganized neurons portends poor cell survival and incomplete functional development.

Investigators at Rutgers University (Piscataway, NJ, USA) and Stanford University (Palo Alto, CA, USA) recently described the design of three-dimensional scaffolds based on tunable electrospun microfibrous polymeric substrates. More...
These scaffolds promoted in situ stem cell neuronal reprogramming, neural network establishment, and supported neuronal engraftment into the brain.

The investigators reported in the March 17, 2016, online edition of the journal Nature Communications that they had successfully grafted scaffold-supported, reprogrammed neuronal networks into organotypic hippocampal brain slices. This approach yielded an approximately 3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival by about 38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes.

"If you can transplant cells in a way that mimics how these cells are already configured in the brain, then you are one step closer to getting the brain to communicate with the cells that you are now transplanting," said senior author Dr. Prabhas V. Moghe, professor of biomedical, chemical, and biochemical engineering at Rutgers University. "In this work, we have done that by providing cues for neurons to rapidly network in three dimensions."

Related Links:

Rutgers University
Stanford University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.