Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Experimental Drug Blocks Leukemia Growth in Mouse Model System

By LabMedica International staff writers
Posted on 14 Mar 2016
An experimental drug that blocks the activity of a specific histone demethylase enzyme was found to cure the TAL-1 form of acute T-cell lymphoblastic leukemia (T-ALL) in a mouse model system.

T-ALL afflicts mostly children, with more than 500 new pediatric diagnoses in the United States annually. More...
The leukemia, which occurs in a child's developing T-cells, is fatal in about 1 in 4 cases. In the remaining patients with the disease, T-ALL requires intense levels of chemotherapy or radiation.

Investigators at the Ottawa Hospital Research Institute (Canada; www.ohri.ca) concentrated their efforts on a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL-1.

They reported in the March 1, 2016, issue of the journal Genes & Development that this subtype of T-ALL was uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase enzyme UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome).

The investigators used a model system in which human T-ALL cells were transplanted into mice. Some of the animals were treated with the experimental drug GSK-J4, which is a potent cell-permeable inhibitor of the histone H3 lysine 27 (H3K27) demethylase JMJD3, an essential component of regulatory transcriptional chromatin complexes. They found that this drug blocked UTX activity and stopped the growth of TAL-1 type cancer cells. After three weeks of treatment the number of cancer cells in the bone marrow decreased by 80%, and the drug did not seem to harm normal cells or have any short-term effects on other organs of the body. The treatment was specific for the TAL-1 subtype, and did not prevent growth of any other types of T-ALL.

"It is very exciting because this is the first time anyone has found a potential personalized treatment for this aggressive disease," said senior author Dr. Marjorie Brand, a senior scientist at the Ottawa Hospital Research Institute. "Unlike current therapies, ours targets the offending gene without harming the rest of the body. Learning how a disease works at a molecular level needs to happen before any kind of successful drug can be developed. You need to do laboratory studies to find the right treatment and prove it works."

Related Links:

Ottawa Hospital Research Institute



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.