Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Physical Considerations Regulate Leukocyte Motion in the Circulatory System

By LabMedica International staff writers
Posted on 23 Feb 2016
A team of biomedical engineers constructed a model circulatory system within a polymer microchip, creating a tool that enabled them to show that the relative hardness or softness of white blood cell leukocytes determined whether they clung to the edges of blood vessels or circulated freely with the blood.

Leukocytes normally migrate toward the vascular walls in large blood vessels and within the microvasculature in a process called margination. More...
Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and catecholamine hormones, although the underlying mechanisms remain unclear.

To clarify this matter investigators at the Georgia Institute of Technology (Atlanta, USA) and Emory University (Atlanta, GA, USA) used the microchip circulatory system model to study the purely physical parameters that influenced the motion of white blood cells in the presence—and absence—of the drugs dexamethasone—a glucocorticoid drug—and epinephrine. Atomic force microscopy was used to characterize the stiffness of individual white blood cells before and after they had been exposed to the drugs.

Results published in the February 8, 2016, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) revealed that glucocorticoid and catecholamine exposure reorganized cellular cortical actin, significantly reducing leukocyte stiffness, as measured with atomic force microscopy. Furthermore, using simple kinetic theory computational modeling, the investigators determined that this reduction in stiffness alone was sufficient to cause leukocyte demargination.

“When we fluorescently label the white blood cells and perfuse them into the artificial vessels, the white blood cells are always flowing along the edge, on the walls of these artificial blood vessels,” said senior author Dr. Wilbur Lam, assistant professor of biomedical engineering at the Georgia Institute of Technology and Emory University. “But when they are exposed to the drug, they go to the center of the channel and enter the main blood flow. Then, we discovered that the drugs cause the cells to remodel actin, which comprises the "skeleton" of all mammalian cells. The soft cells are always flowing in the middle of the bloodstream, while the stiff ones are sequestered on the edges. We believe this is how white blood cells traffic in the body and get to the site of an infection. This may be a way that the body very efficiently sorts and directs its white blood cells to get them where they are needed.”

“Whenever there is a change in some cellular activity or physiological activity, we tend to try to explain everything at the genetic level – which genes turn off and which genes turn on,” said Dr. Lam. “Gene expression is a relatively complex process, and our hypothesis is that there are probably a lot of cellular processes that are much simpler and more efficient than the typical paradigm of DNA expression, then RNA translation, and then protein production. A little tweak of a white blood cell’s actin will allow it to change from stiff to soft, and that small change, in and of itself, may have profound physiologic consequences and enable it to be transported from one part of the body to another.”

Related Links:

Georgia Institute of Technology
Emory University



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.