Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Imaging Technique Provides Insights on Telomere Structure

By LabMedica International staff writers
Posted on 16 Feb 2016
A new microscopy technique enables direct visualization of DNA wrapping outside and around histone proteins, such as in telomeres.

Developed by researchers at North Carolina State University (NCSU; Raleigh, USA), the new imaging technique, known as dual-resonance-frequency-enhanced electrostatic force microscopy (DREEM), utilizes the fact that DNA is negatively charged along its backbone. More...
By applying both direct and alternating current biases between the atomic force microscopy (AFM) probe and the sample surface, the technique can detect very weak electrostatic interaction differences when it scans over protein, as compared to DNA regions.

By using DREEM, the researchers were able to see the DNA's path through the T-loop formation created by telomeric repeat-binding factor 2 (TRF2), a key protein in telomere complex structural integrity. The researchers were thus able to envisage how TRF2 compacts DNA, concluding that there may be two orders of DNA compaction within the telomere. First, DNA wraps around a TRF2 protein in the interior of the complex; then, multiple TRF2 molecules come together and create DNA loops that stick out from the TRF2 proteins. The study was published on February 9, 2016, in Nature Scientific Reports.

“We think that this protruding loop provides the entering site for the telomere overhangs to tuck in to form the T-loop structure. This process ultimately helps to maintain the protective structure that prevents fusion of chromosomes or the slow erosion of telomere DNA,” said lead author physicist Hong Wang, PhD. “Revealing DNA paths in TRF2 complexes provides new mechanistic insights into structure-function relationships underlying telomere maintenance pathways.”

Telomeres are essentially caps on the ends of linear DNA chromosomes. In healthy cells, telomeres protect the chromosome by tucking away any overhanging ends of DNA strands to form a lasso-like structure known as a T-loop. Loss of telomere function can activate a DNA damage response, leading to cell senescence, nucleolytic degradation of the natural chromosome ends, or end-to-end fusions.

Related Links:

North Carolina State University



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.