We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Photoactivated Nanoparticles Block Pancreatic Cancer Growth and Metastasis in Mouse Models

By LabMedica International staff writers
Posted on 01 Feb 2016
A nanoparticle delivery system was used for the safe transport a photodynamic therapy (PDT) agent together with a highly toxic anti-cancer drug for the pinpoint treatment of pancreatic cancer.

Few nanoparticle drug delivery schemes have proven effective because cancer cells develop ways to resist and evade treatment. More...
In order to "outsmart" the cancer cells, investigators at Harvard Medical School (Boston, MA, USA) developed a photoactivable multi-inhibitor nanoliposome (PMIL) delivery technique that imparted light-induced cytotoxicity together with a photo-initiated and sustained release of inhibitors that suppressed tumor re-growth and treatment escape signaling pathways.

The PMIL consisted of a nanoliposome doped with a photoactivable chromophore (benzoporphyrin derivative, BPD) in the lipid bilayer, and a nanoparticle containing the drug cabozantinib (XL184) - a multikinase inhibitor - encapsulated inside. Cabozantinib is a small molecule inhibitor of the tyrosine kinases Met (MET proto-oncogene, receptor tyrosine kinase) and VEGFR2 (vascular endothelial growth factor receptor 2), and has been shown to reduce tumor growth, metastasis, and angiogenesis. This drug is quite toxic requiring dose restrictions or treatment interruption.

Met is a receptor tyrosine kinase that stimulates cell scattering, invasion, protection from apoptosis, and angiogenesis. Mutations that cause deregulation of Met activity can cause a wide variety of different cancers, such as renal, gastric and small cell lung carcinomas, central nervous system tumors, as well as several sarcomas. VEGF is an important signaling protein involved in both vasculogenesis (the formation of the circulatory system) and angiogenesis (the growth of blood vessels from preexisting vasculature). When VEGF is overexpressed, it can contribute to the growth and spread of solid tumors.

In the current study, the investigators worked with two mouse pancreatic cancer models. Following intravenous PMIL administration the mice were treated with near-infrared tumor irradiation applied directly to the tumor sites via optical fibers.

The investigators reported in the January 18, 2016, online edition of the journal Nature Nanotechnology that the near-infrared light treatment triggered photodynamic damage of tumor cells and microvessels, and simultaneously initiated release of cabozantinib inside the tumor. A single PMIL treatment achieved prolonged tumor reduction in the two mouse pancreatic cancer models and also suppressed metastatic escape.

These results were obtained using cabozantinib at a dosage level less than one thousandth of what is normally used in oral therapy, with little or no toxicity.

"Right now we can say this approach has tremendous potential for patients with locally advanced pancreatic cancer, for whom surgery is not possible," said senior author Dr. Tayyaba Hasan, professor of dermatology at Harvard Medical School. "In our Phase I/II clinical studies with PDT alone, tumor destruction was achieved in all cases, and we have seen at least one case where PDT alone induced enough tumor shrinkage to enable follow-up surgery. The more robust tumor reduction and suppression of escape pathways possible with PMILs might enable curative surgery or improve the outcome of chemotherapy to enhance patient survival. But while we are encouraged by these results, this combination in a new nanoconstruct needs more validation before becoming a clinical treatment option."

Related Links:

Harvard Medical School



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.