Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Pulmonary Neuroendocrine Cells Function as Airway Sensors to Control Immune Response in the Lung

By LabMedica International staff writers
Posted on 24 Jan 2016
Researchers have found that pulmonary neuroendocrine cells (PNECs) sense environmental stimuli and transmit this information to the nervous system, which orchestrates an immune response in the lung.

PNECs, which comprise only about 1% of the cells in the airway epithelium, occur in the lung as solitary cells or as clusters called neuroepithelial bodies (NEB). More...
They are also located in the nasal respiratory epithelium, laryngeal mucosa, and throughout the entire respiratory tract from the trachea to the terminal airways. PNECs have been implicated in a wide range of human lung diseases, including asthma, pulmonary hypertension, cystic fibrosis, and sudden infant death syndrome, among others. Until now, their normal function in living animals was unknown.

As part of a larger study on congenital respiratory disorders, investigators at the University of Wisconsin (Madison, USA) found that Roundabout receptor (Robo) genes were expressed in PNECs. In a mutant model, Robo inactivation in the mouse lung resulted in an inability of PNECs to cluster into sensory organoids and triggered increased neuropeptide production upon exposure to air. Excess neuropeptides led to an increase in immune infiltrates, which in turn remodeled the matrix and irreversibly simplified the alveoli.

The investigators stated in the January 7, 2016, online edition of the journal Science that they had demonstrated in vivo that PNECs acted as precise airway sensors that elicited immune responses via neuropeptides. These findings suggested that the PNEC and neuropeptide abnormalities documented in a wide array of pulmonary diseases may profoundly impact symptoms and progression.

"These cells make up less than 1% of the cells in the airway epithelium, the layer of cells that lines the respiratory tract," said senior author Dr. Xin Sun, professor of medical genetics at the University of Wisconsin. "In the mutant, they do not cluster. They stay as solitary cells, and as single cells they are much more sensitive to the environment. Our conclusion is that they are capable of receiving, interpreting, and responding to environmental stimuli such as allergens or chemicals mixed with the air we breathe."

Related Links:

University of Wisconsin



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.