We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Secondary Bile Acids in the Large Intestine Inhibit Clostridium difficile Growth

By LabMedica International staff writers
Posted on 17 Jan 2016
Secondary bile acids that result from bacterial metabolism in the large intestine inhibit the growth of the pathogenic bacterium Clostridium difficile, but when bile acid levels are disrupted by antibiotic treatment, C. More...
difficile is able to flourish.

Primary bile acids are those synthesized by the liver, while secondary bile acids result from bacterial actions in the colon. So far inhibition of C. difficile growth by secondary bile acids had only been shown in vitro. To understand how this mechanism works in vivo, investigators at North Carolina State University (Raleigh, USA) and the University of Michigan (Ann Arbor, USA) used targeted bile acid metabolomics to determine the physiologically relevant concentrations of primary and secondary bile acids present in the mouse small and large intestinal tracts and how these impacted C. difficile dynamics. Metabolomics is the study of chemical processes involving metabolites, while the metabolome represents the collection of all metabolites in a biological cell, tissue, organ, or organism that are the end products of cellular processes.

The investigators treated mice with a variety of antibiotics to create distinct microbial and metabolic (bile acid) environments and directly tested their ability to support or inhibit C. difficile spore germination and outgrowth.

They reported in the January 6, 2016, online edition of the journal mSphere that susceptibility to C. difficile in the large intestine was observed only after specific broad-spectrum antibiotic treatment (cefoperazone, clindamycin, and vancomycin) and was accompanied by a significant loss of secondary bile acids (deoxycholate, lithocholate, ursodeoxycholate, hyodeoxycholate, and omega-muricholate). These changes were correlated to the loss of specific microbiota community members, the Lachnospiraceae and Ruminococcaceae families.

Additionally, the investigators found that the physiological concentrations of secondary bile acids present in the large intestine during C. difficile resistance were able to inhibit spore germination and outgrowth in vitro. Conditions in the large intestine were different from those in the small intestine, since C. difficile spore germination and outgrowth were supported constantly in the mouse small intestine regardless of antibiotic perturbation.

"We know that within a healthy gut environment, the growth of C. difficile is inhibited," said senior author Dr. Casey Theriot, assistant professor of infectious disease at North Carolina State University. "But we wanted to learn more about the mechanisms behind that inhibitory effect. These findings are a first step in understanding how the gut microbiota regulates bile acids throughout the intestine. Hopefully they will aid the development of future therapies for C. difficile infection and other metabolically relevant disorders such as obesity and diabetes."

Related Links:
North Carolina State University
University of Michigan



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.