We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cell-Free Bioreactor Produces Therapeutic Proteins for Point-of-Care Use

By LabMedica International staff writers
Posted on 11 Jan 2016
A microfluidic bioreactor for cell-free protein synthesis was developed to facilitate the production of a single-dose of a therapeutic protein for point-of-care delivery.

Cell-free protein synthesis (CFPS) is the production of protein using biological machinery without the use of living cells. More...
The in vitro protein synthesis environment is not constrained by a cell wall or the homeostasis conditions necessary to maintain a living cell. Thus CFPS enables direct access and control of the translation environment which is advantageous for a number of applications including optimization of protein production, optimization of protein complexes, the study of protein synthesis, incorporating non-natural amino acids, high-throughput screens, and synthetic biology.

Investigators at the Oak Ridge National Laboratory (TN, USA) described in the December 22, 2015, online edition of the journal Small a small footprint device for point-of-care use that comprised a long, serpentine channel bioreactor that was enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel "reactor" and "feeder" channels. The engineered membrane facilitated the exchange of metabolites, energy, and inhibitory species and could be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to fine-tune the exchange rate of small molecules.

These design elements enabled extended reaction times and improved yields. Furthermore, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel could be retained.

"With this approach, we can produce more protein faster, making our technology ideal for point-of-care use," said senior author Dr. Scott Retterer, research scientist in the biological and nanoscale systems group at the Oak Ridge National Laboratory. "The fact it is cell-free reduces the infrastructure needed to produce the protein and opens the possibility of creating proteins when and where you need them, bypassing the challenge of keeping the proteins cold during shipment and storage."

Related Links:
Oak Ridge National Laboratory


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.