We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




How Blocking TROY Signaling Slows Brain Cancer Growth

By LabMedica International staff writers
Posted on 29 Nov 2015
Cancer researchers have found how the low molecular weight drug propentofylline (PPF) slows the growth of the aggressive brain tumor glioblastoma multiforme (GBM).

This form of brain cancer is the most common primary tumor of the central nervous system and is almost always fatal. More...
The aggressive invasion of GBM cells into the surrounding normal brain makes complete surgical removal impossible, significantly increases resistance to the standard therapy regimen, and virtually assures tumor recurrence. Median survival for newly diagnosed GBM is 14.6 months and declines to eight months for patients with recurrent GBM.

Investigators at the Translational Genomics Research Institute (Phoenix, AZ, USA) reported in the November 12, 2015, online edition of the Journal of NeuroOncology that TROY (TNFRSF19 or tumor necrosis factor receptor superfamily, member 19), a member of the TNFR gene super-family, played an important role in GBM invasion and resistance. Knockdown of TROY expression inhibited GBM cell invasion, increased sensitivity to the standard chemotherapeutic agent temozolomide (TMZ), and prolonged survival in an intracranial xenograft model.

The investigators examined the effect of the low molecular weight drug propentofylline (PPF) on GMB. PPF is a xanthine derivative that is a phosphodiesterase inhibitor and adenosine reuptake inhibitor with purported neuroprotective effects. It had been extensively studied in Phase II and Phase III clinical trials for Alzheimer’s disease and vascular dementia where it demonstrated blood–brain permeability and minimal adverse side effects.

Results obtained during the current study showed that PPF decreased GBM cell expression of TROY, inhibited glioma cell invasion, and sensitized GBM cells to TMZ. Mechanistically, PPF decreased glioma cell invasion by modulating TROY expression and downstream signaling. Thus, PPF may provide a pharmacologic approach to target TROY, inhibit cell invasion, and reduce therapeutic resistance in GBM.

"We showed that PPF decreased glioblastoma cell expression of TROY, inhibited glioma cell invasion, and made brain cancer cells more vulnerable to TMZ and radiation," said senior author Dr. Nhan Tran, head of the central nervous system tumor research laboratory at the Translational Genomics Research Institute. "Our data suggests that PPF, working in combination with TMZ and radiation, could limit glioblastoma invasion and improve the clinical outcome for brain tumor patients. Clinical trials revealed that PPF can cross the blood-brain barrier, and has minimal side effects. PPF could be easily translated to the clinic as an adjuvant therapy in combination with standard of care treatment for GBM patients."

Related Links:
Translational Genomics Research Institute



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Procalcitonin Test
LIAISON B•R•A•H•M•S PCT II GEN
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.