We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Platelet Membrane-Coated Nanoparticles Kill Circulating Tumor Cells and Prevent Metastasis in Breast Cancer Model

By LabMedica International staff writers
Posted on 25 Nov 2015
Silica nanoparticles functionalized with activated platelet membranes along with surface conjugation of the tumor-specific apoptosis-inducing ligand cytokine TRAIL were shown to facilitate the destruction of circulating tumor cells (CTCs) and prevent the spread of the disease in a mouse breast cancer metastasis model.

Investigators at Cornell University (Ithaca, NY, USA) had shown in previous studies that (CTCs) became part of a "microenvironment" when they became physically associated with activated platelets and fibrin while being transported in the bloodstream.

To attack the tumor cells within this microenvironment, the investigators prepared synthetic silica nanoparticles coated with proteins from activated platelet membranes. More...
Molecules of the cytokine TRAIL (tumor necrosis factor related apoptosis-inducing ligand) were attached to the surface of the particles.

TRAIL is a cytokine that is produced and secreted by most normal tissue cells. It causes apoptosis primarily in tumor cells by binding to certain death receptors. Since the mid-1990s it has been used as the basis for several anti-cancer drugs, but had not been found to have any significant survival benefit.

The investigators reported in the October 21, 2015, online edition of the journal Biomaterials that their synthetic nanoparticles attached to "natural killer cells" in the blood which then became incorporated into CTC-associated micro-thrombi in blood vessels within the lungs. The ramped-up killer cells acted to dramatically decrease lung metastases in a mouse breast cancer metastasis model.

"In our research, we use nanoparticles— the liposomes we have created with TRAIL protein—and attach them to natural killer cells, to create what we call "super natural killer cells" and then these completely eliminate lymph node metastases in mice," said senior author Dr. Michael R. King, professor of biomedical engineering at Cornell University. "So, now we have technology to eliminate bloodstream metastasis—our previous work—and also lymph node metastases."

Related Links:

Cornell University




Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.