We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Molecular Light Shed on “Dark” Cellular Receptors

By LabMedica International staff writers
Posted on 24 Nov 2015
Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. More...
The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally occurring ligands or with drugs.

To probe the activity of orphan G protein-coupled receptors (GPCRs), researchers at the University of North Carolina School of Medicine (Chapel Hill, NC, USA) and University of California, San Francisco (UCSF; San Francisco, CA, USA) developed a technique that combines computer modeling, yeast cell-based molecular screening, and mouse models.

Chemical signals remain unknown for many cell receptors in the human genome. These “orphan” receptors are highly expressed in particular tissues but their functions remain a mystery. They are considered “dark” elements of the genome and yet hold great potential for cell biology and medical therapeutics. “About 27% of FDA-approved drugs act through GPCRs. They are considered to be among the most useful targets for discovering new medications,” said Brian Shoichet, PhD, co-senior author and professor of pharmaceutical chemistry, UCSF. “We provide an integrated approach that we believe can be applied to many other receptors,” said Bryan L. Roth, MD, PhD, co-senior author and professor of pharmacology, UNC School of Medicine.

In the study, the tool was used to identify molecules that can modulate the orphan GPCR called GPR68 (or OGR1), a proton receptor highly expressed in the brain hippocampus. The Roth lab teamed up with the Shoichet lab, which developed the computational method. The goal was to predict those very few molecules that could modulate GPR68. Docking 3.1 million molecules predicted modulators, many of which were confirmed in functional assays. The researchers also found that the molecule “ogerin” activates GPR68. To understand how this affects brain function, mice were given ogerin and put through a battery of behavioral tests. Mice given ogerin were much less likely to learn to fear a specific stimulus, a fear-conditioning controlled by the hippocampus. Ogerin had no effect on control GPR68-knockout mice.

Xi-Ping Huang, PhD, co-first author and research assistant professor, UNC, said, “We used yeast-based screening techniques to find compounds that activate an orphan receptor. Then [co-first author] Joel Karpiak, a graduate student in Shoichet’s lab at UCSF, created a computer model and searched libraries of millions of compounds to find out what kind of molecular structure ensures proper binding and interaction with a specific receptor. Then, back in the lab, we tested new molecules and found a novel ligand.”

The same approach led to discovery of allosteric agonists and negative allosteric modulators for another orphan receptor, GPR65, suggesting that the tool has general applicability for identifying GPCR ligands. The tool opens a new door for both basic and applied research. The genome is still “an iceberg that is mostly submerged,” said Prof. Shoichet, “This paper illuminates a small piece of it, providing new reagents to modulate a previously dark, unreachable drug target. Just as important, the strategy should be useful to many other dark targets.”

The study, by Huang X-P, Karpiak J, et al., was published online ahead of print November 9, 2015, in the journal Nature.

Related Links:

University of North Carolina School of Medicine 
University of California, San Francisco



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.