We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Potential Drug Candidate Blocks Alternate DNA Repair Route in BRCA-Mutated Cancer Cells

By LabMedica International staff writers
Posted on 22 Nov 2015
Cancer researchers have identified a low molecular weight compound that inhibits the RAD52 DNA repair protein and kills cancer cells with a BRCA mutation by blocking the alternate DNA repair route.

BRCA2 and BRCA1 are normally expressed in the cells of breast and other tissues, where they help repair damaged DNA or destroy cells if DNA cannot be repaired. More...
They are involved in the repair of chromosomal damage with an important role in the error-free repair of DNA double strand breaks. If BRCA1 or BRCA2 itself is damaged by a BRCA mutation, damaged DNA is not repaired properly, and this increases the risk for breast cancer as well as for ovarian, prostate, pancreatic, and other cancers.

The protein product of the RAD52 (RAD52 homolog, DNA repair protein) gene binds single-stranded DNA ends, and mediates the DNA-DNA interaction necessary for the annealing of complementary DNA strands. It had been shown in earlier studies that suppression of RAD52 caused the death of BRCA-deficient cells. However, drugs capable of blocking RAD52 had not been identified.

To find a RAD52 inhibitor, investigators at Temple University (Philadelphia, PA, USA) screened more than 18,000 compounds. Eventually they identified 6-hydroxy-DL-dopa (6-OH-dopa) as the only small molecule (molecular weight 213.2) that consistently prevented RAD52 from binding to single-stranded DNA.

The investigators reported in the November 5, 2015, online edition of the journal Chemistry & Biology that multiple molecules of 6-OH-dopa bound to and completely transformed RAD52 undecamer rings into dimers, which abolished the ssDNA binding channel observed in crystal structures. In vitro experiments showed that 6-OH-dopa selectively inhibited the proliferation of BRCA-deficient cancer cells, including those obtained from leukemia patients. Normal cells with functioning BRCA were not affected by inhibition of RAD52.

"Every cell has redundant DNA repair pathways," said senior author Dr. Richard T. Pomerantz, assistant professor of medical genetics and molecular biochemistry at Temple University. "If the main DNA repair pathway, BRCA-mediated homologous recombination, becomes defective cancer cells adapt and still proliferate. The effect is like knocking out two legs of a table that normally is supported by four legs. One leg is lost to BRCA mutations and another to RAD52 inhibition. With only two legs left, the table collapses. Normal cells are left on three legs, due to only RAD52 inhibition, so they survive."

Related Links:

Temple University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Blood Ammonia Test Analyzer
DRI-CHEM NX10N
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.