Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microtubule Network Created by Three-dimensional Printing Transports Blood in an Animal Model

By LabMedica International staff writers
Posted on 18 Nov 2015
A novel three-dimensional printing technique was used to create networks of microtubules that could be surgically attached to supply oxygen and nutrients to replacement tissues and organs growing in vitro and to transplanted organs growing in vivo. More...


A major problem hindering the engineering of large artificial tissues, such as livers or kidneys, is providing internal cells with nutrients. Implanting engineered tissue scaffolds inside the body to encourage blood vessels from nearby tissues to spread to the implanted tissue usually takes too long, and cells deep inside the new organ often starve or die from lack of oxygen before they can be reached by the slow-growing blood vessels.

To avoid this problem, investigators at Rice University (Houston, TX, USA) and surgeons at the University of Pennsylvania (Philadelphia, USA) teamed up do develop a new way to channel nutrients to growing masses of tissue. They created artificial blood vessels by using an open-source three-dimensional printer that deposited individual filaments of sugar glass one layer at a time to print a lattice of microtubules. Once the sugar hardened, it was placed in a mold that was filled with silicone gel. After the gel cured, the sugar was dissolved leaving behind a network of small channels in the silicone.

In a proof-of-principle experiment that was described in the September 28, 2015, online edition of the journal Tissue Engineering Part C: Methods, surgeons connected the inlet and outlet of the engineered microtubule network to a major artery in a small animal model. Using Doppler imaging technology, they observed and measured blood flow through the construct and found that it withstood physiologic pressures and remained open and unobstructed for up to three hours.

"They do not yet look like the blood vessels found in organs, but they have some of the key features relevant for a transplant surgeon," said contributing author Dr. Jordan Miller, assistant professor of bioengineering at Rice University. "We created a construct that has one inlet and one outlet, which are about one millimeter in diameter, and these main vessels branch into multiple smaller vessels, which are about 600 to 800 microns."

"This study provides a first step toward developing a transplant model for tissue engineering where the surgeon can directly connect arteries to an engineered tissue," said Dr. Miller. "In the future we aim to utilize a biodegradable material that also contains live cells next to these perfusable vessels for direct transplantation and monitoring long term."

Related Links:

Rice University
University of Pennsylvania



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.