We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




New Study Explains How Some Cancers Survive Histone Deacetylase Inhibitor Treatment

By LabMedica International staff writers
Posted on 10 Nov 2015
Cancer researchers believe that they now understand why some types of tumor cells are resistant to an important class of drugs known as histone deacetylase inhibitors.

The histone deacetylase inhibitors (HDACi) are a class of cytostatic agents that inhibit the proliferation of tumor cells in culture and in vivo by inducing cell cycle arrest, differentiation, and/or apoptosis. More...
Histone deacetylase inhibitors exert their anti-tumor effects via the induction of expression changes of oncogenes or tumor suppressors, through modulating the acetylation/deactylation of histones and/or non-histone proteins such as transcription factors.

Vorinostat (suberoylanilide hydroxamic acid), the most widely used HDACi, has been shown to bind to the active site of histone deacetylases and act as a chelator for zinc ions also found in the active site of histone deacetylases. Vorinostat's inhibition of histone deacetylases results in the accumulation of acetylated histones and acetylated proteins, including transcription factors crucial for the expression of genes needed to induce cell differentiation.

HDAC inhibitors can successfully treat certain types of cancer, such as lymphoma, but other types survive this disruption. Investigators at Cancer Research, United Kingdom (London) and the University of Birmingham (United Kingdom) now believe that they have unraveled the reason why HDACi is surprisingly well tolerated by most eukaryotic cells.

They reported in the September 16, 2015, online edition of the journal Epigenetics and Chromatin that they had used high density microarrays to observe dynamic changes in transcript levels that appeared during the first two hours of exposure of cancer cultures to HDACi. There was a consistent response to two different inhibitors at several concentrations. Components of all known lysine acetyltransferase (KAT) complexes were down-regulated, as were genes required for growth and maintenance of the lymphoid phenotype. Up-regulated gene clusters were enriched in regulators of transcription, development, and phenotypic change.

First author Dr. John Halsall, a postdoctoral research fellow at the University of Birmingham, said, "Our work has shown that some cancer cells can survive the gene damage caused by HDAC inhibitor drugs, so we have unveiled a new layer of the cancer cell's defense that we need to target to destroy tumors. If we work out exactly which types of cancer are vulnerable to these drugs we can use them in a smarter way to treat patients more effectively."

Dr. Kat Arney, science information manager at Cancer Research, United Kingdom, said, "Working out how genes are switched on and off in cancer is vital if we are to truly understand and beat the disease. This study could help us tailor how we use HDAC inhibitors so that more patients could benefit from them, and we will continue to work towards finding more effective ways to target cancer's control mechanisms in the future."

Related Links:

Cancer Research, United Kingdom
University of Birmingham



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.