We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Nanovesicles Coated with Platelet Membranes Target Cancer Cells and Reduce Doxorubicin Toxicity

By LabMedica International staff writers
Posted on 14 Oct 2015
A novel delivery system for the toxic chemotherapeutic drug doxorubicin (Dox) utilizes nanovesicles coated with extracted platelet membranes and the cytokine TRAIL.

Although in use for more than 40 years as a primary chemotherapy drug, Dox is known to cause serious heart problems. More...
To prevent these, doctors may limit the amount of Dox given to each patient so that the total amount a patient receives over her or his entire lifetime is 550 milligrams per square meter, or less. Furthermore, the necessity to stop treatment to protect the patient from heart disease may diminish the usefulness of Dox in treating cancer. TRAIL is a cytokine that is produced and secreted by most normal tissue cells. It causes apoptosis primarily in tumor cells by binding to certain death receptors. Since the mid-1990s it has been used as the basis for several anticancer drugs, but was not been found to have any significant survival benefit.

Platelet membranes are a source of P-selectin proteins, which function as cell adhesion molecules (CAMs) on the surfaces of activated endothelial cells, which line the inner surface of blood vessels, and activated platelets.

Investigators at North Carolina State University (Raleigh, USA) and the University of North Carolina (Chapel Hill, USA) incorporated Dox into spherical nanovesicle gels that were subsequently coated with extracted platelet membranes and TRAIL.

The P-selectin proteins on the platelet membrane were expected to bind to CD44 proteins on the surface of cancer cells, locking the vesicles into place. TRAIL on the surface of the vesicles would attack the cancer cell membrane, and after ingestion of the nanovesicles by the cancer cells, the acidic environment inside the cells would break down the vesicles, freeing Dox to interfere with the cancer cells' nuclei. The platelet membrane-coated nanovesicles were able to survive in the circulation for up to 30 hours, as compared to approximately 6 hours for vehicles without the coating.

In a study using mice that was published in the September 29, 2015, online edition of the journal Advanced Materials, the investigators reported that the use of Dox and TRAIL in this drug delivery system was significantly more effective against large tumors and circulating tumor cells than using Dox and TRAIL in a nano-gel delivery system without the platelet membrane component.

"There are two key advantages to using platelet membranes to coat anticancer drugs," said senior author Dr. Zhen Gu assistant professor in the joint biomedical engineering program at North Carolina State University and the University of North Carolina. "First, the surface of cancer cells has an affinity for platelets - they stick to each other. Second, because the platelets come from the patient's own body, the drug carriers are not identified as foreign objects, so last longer in the bloodstream. We would like to do additional preclinical testing on this technique, and we think it could be used to deliver other drugs, such as those targeting cardiovascular disease, in which the platelet membrane could help us target relevant sites in the body."

Related Links:

North Carolina State University
University of North Carolina



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.