We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Blocking Glycolysis Helps Antimitotic Chemotherapeutic Drugs to Work Better

By LabMedica International staff writers
Posted on 15 Sep 2015
Blocking the attempts of tumor cells to establish glycolysis as their primary means of generating energy was found to significantly augment the chemotherapeutic benefits of drugs that prevent the cells from dividing.

Cancer researchers have long wondered how tumor cells survived when their ability to divide was disrupted by treatment with antimitotic drugs such as the toxanes (paclitaxel and docetaxel) or alkaloids derived from Vinca (Catharanthus roseus), such as vinblastine, vincristine, and vinorelbine.

Investigators at the Spanish National Cancer Research Center (Madrid, Spain) were among groups looking into this question. More...
They reported in the August 31, 2015, online edition of the journal Nature Cell Biology that survival during mitotic arrest was affected by the special energetic requirements of mitotic cells. Prolonged mitotic arrest resulted in mitophagy-dependent loss of mitochondria, accompanied by reduced ATP levels and the activation of AMPK (5' adenosine monophosphate-activated protein kinase).

Oxidative respiration in cells undergoing mitotic arrest was replaced by glycolysis owing to AMPK-dependent phosphorylation of PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3) and increased production of this protein as a consequence of mitotic-specific translational activation of its mRNA. Induction of autophagy or inhibition of AMPK or PFKFB3 resulted in enhanced cell death in mitosis and improved the anticancer efficiency of chemotherapeutic agents (microtubule poisons) in breast cancer cells.

"The therapeutic value of inhibiting PFKFB3 has often been discussed; however, no appropriate cell-based scenario had been proposed for its clinical use. Our results suggest that PFKFB3 inhibitors can be extremely efficient in combination with antimitotic drugs," said senior author Dr. Marcos Malumbres, head of the cell division and cancer group at the Spanish National Cancer Research Center.

Related Links:

Spanish National Cancer Research Center



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.