We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




DNA Found That Enables Growth of Wild-Type Hepatitis C Virus in Cell Cultures

By LabMedica International staff writers
Posted on 31 Aug 2015
A team of molecular virologists has found that the overexpression of a particular DNA in liver cancer cells enables these cells to maintain the growth of wild-type Hepatitis C virus (HCV) in culture.

Since its discovery in 1989, efforts to grow clinical isolates of HCV in cell culture have met with limited success. More...
Only the JFH-1 isolate has the capacity to replicate efficiently in cultured liver cells without first undergoing cell culture-adaptive mutations.

Investigators at The Rockefeller University (New York, NY, USA) hypothesized that cultured cells lack one or more factors required for the replication of clinical isolates. To identify these factors, the investigators used a pooled Lentivirus-based human complementary DNA (cDNA) library to transfect cultures of liver cancer cells with HCV subgenomic replicons lacking any adaptive mutations, and then selected for stable replicon colonies.

Results from screening more than 7,000 human genes by this process were published in the August 12, 2015, online edition of the journal Nature. They revealed the identification of a single cDNA, SEC14L2, which enabled RNA replication of diverse HCV genotypes in several liver cancer cell lines. This effect was dose-dependent and required the continuous presence of SEC14L2.

Remarkably, SEC14L2-expressing liver cancer cells also supported HCV replication following inoculation with patient sera. Mechanistic studies suggested, and the investigators speculated, that SEC14L2 promoted HCV infection by enhancing vitamin E-mediated protection against lipid peroxidation.

"Being able to easily culture HCV in the lab has many important implications for basic science research," said senior author Dr. Charles M. Rice, professor of virology at The Rockefeller University. "There is still much we do not understand about how the virus operates, and how it interacts with liver cells and the immune system."

Related Links:

The Rockefeller University



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.