Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Drug Candidate Propels Cancer Cells into Fatal Overdrive

By LabMedica International staff writers
Posted on 23 Aug 2015
A candidate drug that destroys cancer cells by stimulating them to produce more proteins than the cells can actually process was shown to kill a wide variety of cancer cells in culture and to inhibit tumor growth in animal models.

Investigators at Baylor College of Medicine (Houston, TX, USA) identified the drug MCB-613 as an activator of the steroid receptor coactivators (SRC-1, SRC-2, and SRC-3) while screening a large number of compounds for drugs that would inhibit SRCs. More...
However, when the investigators tested the compound with cultures of cancer cells, they found that MCB-613 could super-stimulate SRCs’ transcriptional activity. Further study revealed that MCB-613 increased SRCs’ interactions with other coactivators and markedly induced ER (endoplasmic reticulum) stress coupled to the generation of toxic reactive oxygen species (ROS).

Results published in the August 10, 2015, issue of the journal Cancer Cell revealed that MCB-613 killed human breast, prostate, lung, and liver cancer cells, while sparing normal cells. When administered to 13 mice with breast cancer, MCB-613 reduced tumor growth without causing toxicity, whereas tumors continued to grow by about three-fold over seven weeks in the control group of 14 mice. The toxic effect of the drug was shown to be due to the accumulation of unfolded proteins in the ER. The inability of the ER to cope with such a large number of proteins caused a state of stress to develop that stimulated production of toxic ROS species and the destruction of the cell.

"No prior drug has been previously developed or proposed that actually stimulates an oncogene to promote therapy," said contributing author Dr. David Lonard, associate professor of molecular and cell biology at Baylor College of Medicine. "Our prototype drug works in multiple types of cancers and encourages us that this could be a more general addition to the cancer drug arsenal."

Related Links:
Baylor College of Medicine 



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Blood Ammonia Test Analyzer
DRI-CHEM NX10N
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.