We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Synthetic Nanoparticle Vaccine Confers Long-Term Protection Against Respiratory Syncytial Virus Infection

By LabMedica International staff writers
Posted on 19 Aug 2015
A team of molecular virologists and immunologists has shown that alveolar macrophages (AMs) play an important role in immune protection following vaccination against respiratory syncytial virus (RSV) by controlling eosinophils, mucus production, inflammatory cytokines, and T-cell infiltration.

Alveolar macrophages are phagocytes that play a critical role in homeostasis, host defense, the response to foreign substances, and tissue remodeling. More...
Since alveolar macrophages are pivotal regulators of local immunological homeostasis, their population density is decisive for the many processes of immunity in the lungs. They are highly adaptive components of the innate immune system and can be specifically modified to whatever functions needed depending on their state of differentiation and micro-environmental factors encountered. Alveolar macrophages release numerous secretory products and interact with other cells and molecules through the expression of several surface receptors.

Investigators at Georgia State University (Atlanta, USA) studied the role of alveolar macrophages in the immune response mounted by mice that had been vaccinated against RSV with a vaccine comprising either fusion and glycoprotein virus-like nanoparticles (FG VLPs) or formalin-inactivated RSV (FI-RSV). The FG VLP vaccine is currently being evaluated for possible use in humans while the FI-RSV vaccine had been studied and rejected in the 1960s because it caused severe vaccine-enhanced respiratory disease.

In the current study mice were infected with a live RSV pathogen one year after vaccination. In some of the animals the apoptosis-inducing agent clodronate liposomes (CLs) was used to deplete tissue macrophages in order to focus on the role of the alveolar macrophages.

Results published in the July 14, 2015, online edition of the International Journal of Nanomedicine revealed that animals vaccinated with FG VLPs showed no obvious signs of severe pulmonary disease upon RSV infection and displayed significantly lower levels of eosinophils, T-cell infiltration, and inflammatory cytokines. These mice had much higher levels of anti-RSV antibodies and interferon-gamma antiviral cytokine, which are correlated with protection against RSV disease.

In comparison, mice vaccinated with FI-RSV and then treated with clodronate liposomes demonstrated increases in eosinophils, plasmacytoid dendritic cells, interleukin-4 T-cell infiltration, proinflammatory cytokines, chemokines, and mucus production upon RSV infection. FI-RSV immune mice showed severe pulmonary disease in tissue examinations.

The results obtained in this study suggest that FG nanoparticle vaccination induced long-term protection against RSV and that AMs played a role in protection against RSV by modulating eosinophilia, mucus production, inflammatory cytokines, and T-cell infiltration.

"Recombinant engineered nanoparticle vaccines might be developed to prevent highly contagious respiratory pathogens such as RSV, as reported in this study," said senior author Dr. Sang-Moo Kang, professor of biomedical sciences at Georgia State University.

Related Links:

Georgia State University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Blood Ammonia Test Analyzer
DRI-CHEM NX10N
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.